Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругая и пластическая деформация и разрушение монокристалла металла

Упругая и пластическая деформация и разрушение монокристалла металла  [c.238]

Было обнаружено, что, вследствие обратимой адсорбции материалом поверхностно-активных веществ из окружающей среды, облегчается упругая и в особенности пластическая деформация и разрушение материала. Объясняется это явление так. При растяжении монокристалла металла образуются микрощели с радиусом кривизны в вершине порядка нескольких А если при этом деформируемый образец помещен в жидкость с поверхностно-активными веществами, происходит проникновение адсорбционных слоев молекул из жидкости в указанные микрощели. В упругой области микрощели при разгрузке смыкаются. Такое поведение материала проиллюстрировано на рис. 4.39, на котором изображены диаграммы напряжений для монокристалла олова. Малая добавка олеиновой кислоты к вазелиновому маслу снижает все механические характеристики в чистом вазелине свойства олова такие же, как и в воздушной среде. Существует оптимальный процент содержания по-  [c.274]


Анизотропия характеристик разрушения обусловливается либо наличием преимущественных кристаллографических ориентировок (вследствие анизотропии монокристаллов), либо волокнистым строением металлических изделий при наличии в структуре вытянутых хрупких структурных составляющих и включений. При растяжении вдоль включений (вдоль направления горячей деформации) их влияние до образования шейки проявляется слабо, главным образом, за счет концентрации напряжений около контура включений. После образования шейки, в результате возникновения объемного напряженного состояния, ослабляющее влияние включений проявляется сильнее за счет воздействия на них поперечных напряжений. В случае растяжения в поперечном направлении включения существенно уменьшают эффективное рабочее сечение образца, и их влияние проявляется уже в упругой области и на стадии начальной пластической деформации и может произойти хрупкое или малопластичное разрушение вследствие воздействия растягивающих напряжений по поверхности металл — включение.  [c.336]

Различают теоретическую и техническую прочность металла. При определении теоретической прочности предполагают, что исследуемый монокристалл имеет идеальную кристаллическую решетку, деформируется до момента разрушения упруго и разрушается хрупко, без пластической деформации. Техническая, или наблюдаемая, прочность определяется непосредственно экспериментом на реальных образцах со всеми присущими им дефектами.  [c.29]

Основы теории пластической деформации. На монокристалл (рис. 53, а) действует напр5Гжение а, которое можно рассматривать состоящим из двух напряжений нормального а и касательного Под влиянием нормальных напряжений кристалл упруго деформируется, в дальлейшем при возрастании напряжения наступает разрушение металла путем отрыва одной его части от другой (рис. 53, б). В этом случае металл претерпевает хрупкое разрушение.  [c.73]

В монографии обобщены литературные данные и собственные экспериментальные и теоретические результаты авторов в области упруго-пластических, прочностных и кинетических свойств материалов различных классов при ударно-волновом нагружении, приведены необходимые сведения из механики сплошных сред, обсуждается современная техника экспериментов. Суммированы результаты экспериментальных исследований и расчетные модели вязко-упруго-нластической деформации и разрушения материалов различных luia oB, включая металлы и сплавы, хрупкие керамики и горные породы, монокристаллы и стекла, полимеры и эластомеры, в ударных волнах. Представлено несколько наиболее важных примеров полиморфных превращений веществ в ударных волнах. Анализируется механический эф кт взаимодействия импульсов лазерного и корпускулярного излучения с веществом. Представлен обзор уравнений состояния и кинетики разложения взрывчатых веществ в ударных и детонационных волнах. Подбор и изложение материала ориентированы на расчетное прогнозирование действия взрыва, высокоскоростного удара, импульсных лазерных и корпускулярных пучков. В мо1юграфию включены сведения справочного характера.  [c.1]

Попытка создания теории на основе модели, отражающей отдельные аспекты поведения материала под нагрузкой, была сделана О. Я. Бергом [29], который исходил из концепции теории максимальных удлинений. Используя графический метод усреднения по стереографическим проекциям кристалла с гранецентрированной кубической решеткой, Закс [623 впервые описал состояние текучести поликристалла при растяжении и кручении. Н. И. Снитко [4151 предложил метод численного нахождения предела текучести поликристаллического металла при любом напряженном состоянии путем синтеза условий текучести отдельных монокристаллов. Теория критического изменения объема была предложена Бриком [524]. Давен [542] рассматривал явление разрушения как потерю устойчивости при упругой деформации материала. И. А. Одинг [326 ], связывая эффект пластической деформации с максимальными касательными напряжениями, указывал, что при различных напряженных состояниях дефекты структуры оказывают различное  [c.127]



Смотреть страницы где упоминается термин Упругая и пластическая деформация и разрушение монокристалла металла : [c.196]    [c.191]   
Смотреть главы в:

Прикладная механика твердого деформируемого тела Том 1  -> Упругая и пластическая деформация и разрушение монокристалла металла



ПОИСК



Деформация и разрушение металлов

Деформация металла, пластическая

Деформация пластическая

Деформация пластическая монокристаллов

Деформация разрушения

Деформация упругая

Деформация упруго-пластическая

Металлы деформация

Монокристалл

Монокристаллы металлов

Пластическая деформаци

Пластическая деформация и разрушение

Разрушение металла

Разрушение монокристалла металла

Разрушение пластическое

Упругая и пластическая деформации и разрушение

Упругая и пластическая деформации металлов



© 2025 Mash-xxl.info Реклама на сайте