Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Активирование протекторов

Активаторы 188, 189 Активирование протекторов 183 Алюминиевые протекторы 182—185 Анатаз тетрагональный 205 Анаэробная коррозия 353 Анаэробные условия 413 Анод 164, 212  [c.492]

В большинстве случаев нужно защищать углеродистую или низколегированную сталь. Обычный для них защитный потенциал может быть достигнут в реальных практических условиях с применением протекторов из цинка, алюминия и магния. Для материалов с более положительными защитными потенциалами, например для высоколегированных сталей, сплавов меди, никеля или олова, можно применять также и протекторы из железа или активированного свинца (см. раздел 2.4). В настоящем разделе после краткого обзора мягкого железа как материала для протекторов рассматриваются только три вышеназванных металла и их сплавы.  [c.175]


Для внутренней защиты резервуаров с питьевой водой можно применять только такие аноды (протекторы), анодные продукты реакции которых в воде по своему виду и концентрации не представляют опасности в гигиеническом отношении, По этой причине здесь не могут быть применены протекторы или аноды с наложением тока от внешнего источника, содержащие токсичные элементы, например алюминиевые протекторы, активированные ртутью, или протекторы из сплава свинца с серебром (см. разделы 7 и 8). В качестве протекторов для резервуаров с питьевой водой практически можно применять только магний и алюминий, поскольку продукты их реакции не вредны для здоровья, а ионы магния и без того содержатся в природной питьевой воде.  [c.412]

Интересные результаты были получены и при изучении числа центров, в которых могло происходить активирование металла и зарождение питтингов. Обычно считают, что на поверхности нержавеющих сталей имеется какое-то ограниченное число точек, обусловленное структурными особенностями сплава, в которых только и могут возникнуть питтинги [15]. Наши опыты показали, что это не совсем так на поверхности нержавеющей стали имеется, очевидно, неограниченное число центров, в которых может начаться питтинговая коррозия. Число питтингов может непрерывно возрастать по мере того, как мы вскрываем ранее образовавшиеся питтинги (рис. 175). Обычно основная часть питтингов возникает уже в первые минуты (5—10 мин) воздействия электролита на металл и, если их не вскрывать, новые питтинги, как правило, не появляются (рис. 175, кривая 1). Объясняется это тем, что каждый возникающий вначале питтинг представляет собой точечный протектор, сильно уменьшающий вероятность возникновения питтингов в других точках поверхности. Если, однако, возникшие за некоторое время питтинги вскрывать и этим самым прекращать их рост, на поверхности появляются все новые и новые питтинги (рис. 175, кривая 2). Число питтингов достигает 4200 на 1 дм вместо 400, возникающих, когда питтинги 336  [c.336]

К труднорастворимым соединениям, образующимся на магниевых протекторах при обычной токовой нагрузке, относятся гидроксид, карбонат и фосфат магния. Впрочем, растворимость гидроксида и карбоната еще сравнительно высока. Очень низкую растворимость имеет только фосфат магния. Движущее напряжение у магниевых протекторов при защите стали при не слишком малой электропроводности и> >500 мкСм-см составляет около 0,65 В, т. е. в три раза выше, чем у цинка и алюминия. Магниевые протекторные сплавы применяются преимущественно там, где движущее напряжение цинковых и алюминиевых протекторов недостаточно или где опасность пассивации слишком велика. Магниевые протекторы используют при повышенном электросопротивлении среды и для получения большей плотности защитного тока. Объектами такой защиты могут быть стальные конструкции в пресной воде, балластные танки для пресной воды, водоподогреватели и резервуары для питьевой воды. В случае резервуаров для питьевой воды важное значение имеет физиологическая безвредность продуктов коррозии (см. раздел 21.4). Здесь нельзя, например, применять алюминиевые протекторы, активированные ртутью. В грунте магниевыми протекторами можно защищать небольшие сооружения при удельном сопротивлении грунта до 250 Ом-м и более крупные резервуары и трубопроводы при сопротивлении грунта до 100 Ом-м. На объектах, имеющих органические покрытия для защиты от коррозии, в средах со сравнительно хорошей проводимостью иногда может оказаться необходимым промежуточное включение омического сопротивления для ограничения тока, чтобы не допустить повреждения покрытия слишком большим защитным током, или чтобы предотвратить установление слишком низких потенциалов (см. раздел 6).  [c.188]



Смотреть страницы где упоминается термин Активирование протекторов : [c.183]    [c.109]    [c.196]   
Катодная защита от коррозии (1984) -- [ c.183 ]



ПОИСК



Активирование

Активирование активирования

Протекторы



© 2025 Mash-xxl.info Реклама на сайте