Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Топологическая марковская цепь минимальных множеств

В этой статье марковские разбиения используются для изучения минимальных множеств диффеоморфизмов, принадлежащих к некоторому классу, введенному Смейлом [9]. В [I] (или [15, ЗС]. — Ре5.) мы построили марковские разбиения базисных множеств 2 диффеоморфизмов f, удовлетворяющих аксиоме А (см. [9]), обобщив метод, примененный Синаем к диффеоморфизмам Аносова ([7], [8], [П]). При помощи этих разбиений удается представить f = f QsKaк факторсистему неприводимой топологической марковской цепи с конечным числом состояний [1, 4] (нли [15, теорема 3.18]. — Ред.) при этом отображение факторизации л эквивариантиым образом сопоставляет точкам некоторые последователь- ности символов.  [c.92]



Динамические системы-1 (1985) -- [ c.235 ]



ПОИСК



Код минимальный

Марковская цепь

Минимальное множество

Множество

ТМЦ — топологическая марковская

Топологическая марковская цепь



© 2025 Mash-xxl.info Реклама на сайте