Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Индекс сложного состояния равновесия

Теорема Бендиксона об индексе сложного состояния равновесия  [c.559]

Отсюда вытекает, что одно состояние равновесия с индексом, не равным нулю, не может ни появиться, ни исчезнуть при изменении параметра. Если мы имеем простую особую точку — узел, то она может, например, исчезнуть лишь после предварительного слияния с седлом, при котором образуется сложная особая точка с индексом, равным нулю. Обратно, седло или узел могут, например, появиться следующим образом сначала появляется сложная особая точка с индексом, равным нулю, которая затем разделяется на две седло и узел )  [c.467]


Очевидно, однако, что при принятии такого определения мы не имели возможности говорить о грубо сти целого ряда систем, которые естественно считать грубыми. Так, например, пусть рассматривался динамическая система, которая имеет в некоторой области С (ограниченной замкнутой кривой) только одно седло илп узел и седло. Такие системы мы должны, очевидно, считать грубыми. Но мы не можем пользоваться определением I, так как граница области С в этих примерах, очевидно, не может быть циклом без контакта. Индекс замкнутой кривой, являющейся границей области С, в этих случаях, очевидно, не равен единице, и, следовательно, она не может быть циклом без контакта. Можно подправить определение I, делая более общие предположения относительно границы области С. Например, можно допускать, что граница области О есть гладкая простая замкнутая кривая, имеющая конечное число касаний с траекториями системы (А) и не содержащая состояний равновесия (см. [155]). Однако всякие такие предположения относительно границы области всегда являются ограничениями, посторонними понятию грубости динамической системы. Ограничения на возможные границы должны вытекать из определения грубости. Кроме того, по смыслу понятия грубости из грубости системы в некоторой области С должна вытекать — непосредственно из определения — грубость системы в произвольной замкнутой области Со, содержащейся в О. Поэтому все указанные определения грубости (с условиями на границе) не полностью отражают смысл понятия грубости системы, а его отражает более сложное по форме определение I. Отметим, что из определения I непосредственно вытекает, что система (А) — грубая в некоторой области С — груба во всякой области " =( . Определение Г фактически используется также при рассмотрении негрубых систем, когда область, в которой рассматривается негрубая система, естественным образом разделяется на части, в которых система является грубой, и части, в которых система содержит негрубые элементы.  [c.153]


Качественная теория динамических систем второго порядка (0) -- [ c.559 ]



ПОИСК



Индекс

Состояние равновесия



© 2025 Mash-xxl.info Реклама на сайте