Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Линейные молекулы симметричные, электронные состояни

В электронных состояниях, не вырожденных орбитально, спин-орбитальная связь обычно очень мала точно так же, как в электронных состояниях Е линейных или двухатомных молекул (случай Ъ но Гунду), но с увеличением / и А" она возрастает. Введем теперь, как и для линейных молекул, квантовое число N полного момента количества движения, за исключением снина, которое заменит J во всех предыдущих формулах для симметричного волчка. Прибавляя к 3" спин получаем полный момент количества движения  [c.89]

Вряд ли стоит подчеркивать, что в молекулах типа симметричного волчка могут существовать локальные возмущения в узких областях значений/, точно такие же, как в линейных молекулах, и обусловленные теми же самыми причинами, т. е. взаимодействиями Ферми и Кориолиса между различными колебательными уровнями данных электронных состояний или между различными электронно-колебательными уровнями различных электронных состояний.  [c.100]


Поскольку магнитный дипольный момент — аксиальный вектор, его компоненты имеют те же типы симметрии, что и компоненты вращения Нх, Ву, В г (приложение I). Электрический квадрупольный момент — тензор, компоненты которого ведут себя подобно компонентам поляризуемости, т. е. как произведение двух трансляций. Следовательно, можно пользоваться данными табл. 55 тома II ([23], стр. 274) для типов симметрии составляющих хж, < х(/,. ... Например, для симметричных линейных молекул (точечная группа 1)ос ) компоненты магнитного дипольного момента относятся к типам симметрии и П , а компоненты электрического квадрупольного момента — к типам симметрии Е , Пg, Ад. Следовательно, для того чтобы данный переход был разрешенным для магнитного дипольного излучения, произведение электронных волновых функций верхнего и нижнего состояний должно относиться к тинам 2 или П . Так, при поглощении из полносимметричного основного состояния могут происходить переходы 2 — 2 , П — 2 . Аналогично нри переходах, разрешенных для электрического квадрупольного излучения, произведение волновых функций должно относиться к одному из типов симметрии 2 , П , или А . При поглощении из полносимметричного основного состояния могут иметь место переходы 2 — 2 , Пд — 2д и Ай — 2 .  [c.134]

Главные полосы изогнуто-линейных переходов. Если молекула нелинейна в возбужденном состоянии, то она, разумеется, относится к типу асимметричного волчка. Поэтому нужно рассмотреть переходы между уровнями асимметричного волчка и вращательными уровнями линейной молекулы. Рассмотрим сначала случай, когда молекула в возбужденном состоянии близка к вытянутому симметричному волчку (хотя, строго говоря, она является асимметричным волчком) и когда вполне определено квантовое число К момента количества движения относительно оси фигуры. В этом случае положение вращательных уровней может быть описано формулой (1,146) для почти симметричного волчка. В нижнем состоянии квантовое число К определяется только электронным и колебательным моментами количества движения, т. е. " = " А" , и если в основном состоянии Л = О, то К" = Г.  [c.193]

Именно на основе этих соображений я решил сначала исследовать возможность получения лазерного эффекта, используя колебательно-вращательные переходы основного электронного состояния углекислого газа. Казалось, что двухатомные молекулы менее пригодны для получения непрерывных лазерных колебаний из-за неподходящего времени жизни возбужденных колебательных уровней основного электронного состояния двухатомных молекул. Углекислый газ был выбран по двум причинам он представляет собой одну из простейших трехатомных молекул, и о его колебательно-вращательных переходах уже имелась довольно большая спектроскопическая информация. Молекула углекислого газа линейна и симметрична по конфигурации и имеет три колебательные степени свободы (см. рис. 3). Одна из степеней свободы — это симметричные колебания атомов молекулы вдоль межъядерной оси. Этот режим колебаний называется симметричной растягивающей модой, и его частота обозначается VI. Другой симметричный режим — колебания атомов перпендикулярно межъядерной оси. Он называется изгибной модой, и его частота обозначается V2. Наконец, существует асимметричная мода продольных колебаний вдоль межъядерной оси. Ее частота обозначается Vз. Согласно правилам квантовой механики, энергии колебаний квантуются и все отличны друг от друга. В первом приближении эти три моды колебаний не зависят одна от другой. Вследствие этого молекулу углекислого газа можно возбудить в колебательное состояние, являющееся любой линейной комбинацией трех отдельных мод. Поэтому колебательные состояния молекулы должны описываться тремя квантовыми числами 1, Гг и которые отвечают числу квантов в модах VI, V2 и Гз. В соответствии с этим колебательный уровень описывается тройкой чисел (V,, V2, Уз).  [c.61]


Резюмируя сказанное, можно сделать следующее заключение. Если удается установить, что ( -линии в перпендикулярной (главной) полосе изогнуто-линейного перехода связаны с переходами на верхние или на нижние компоненты Z-дублетов, то из этого непосредственно следует, что верхнее электронно-колебательное состояние относится соответственно к тину А или А" ъ случае точечной группы s, к типу Ai или Bi в случае точечной группы С п и к типу В , или А в случае точечной группы С гд. Для симметричных молекул наблюдаемое чередование интенсивности позво-  [c.198]

Если линейная молекула принадлежит к точечной группе Dooh, т- е. имеет центр симметрии (как, например, молекула С Н ), то, помимо свойств симметрии по отношению к инверсии, появляются свойства симметрии по отношению к перестановке одинаковых ядер—собственная функция может быть симметричной или антисимметричной. Полная собственная функция < системы (без учета собственной функции спина ядра) остается неизменно или меняет свой знак при одновременной перестановке всех ядер, расположенных по одну сторону от центра, с ядрами, расположенными по другую сторону. Мы называем соответствующие вращательные уровни симметричными или антисимметричными. Ниже будет показано, что точно так же, как и в случае двухатомных молекул, имеющих одинаковые атомы, либо положительные вращательные уровни являются симметричными, а отрицательные—-антисимметричными, либо отрицательные уровни являются симметричными, а положительные—-антисимметричными. Первая возможность осуществляется для симметричных электронных состояний (состояний при отсутствии колебаний для этого случая на фиг. 4 указана симметрия буквами в скобках.  [c.27]

Статистические веса, влияние спина и статистика. Статастическиа вес вращательного уровня полностью симметричного электронного состояния ( 2 ) линейной молекулы точечной группы Соо , (отсутствует центр симметрии, например, в случае молекулы НСМ) задается числом возможных ориентаций вектора J в магнитном поле, т. е. величиною 2У- -1.  [c.28]

Почти у всех молекул в основном электронном состоянии суммарный механик. момент электронов равен нулю н магн. С. с. колебательно-вращат. уровней энергии гл. обр. связана с вращением молекулы. В случае двухатомных, линейных многоатомных молекул и молекул типа симметричного волчка (см. Молекула), содержащих одно ядро со спином I на оси молекулы,  [c.459]

Молекула СО2 линейна и в изотопических модификациях с одинаковыми атомами кислорода симметрична. В осн. электронном состоянии при 1=0 у колебат. состояний, симметричных по отношению к перестановке атомов кислорода, вращат. квантовые числа J чётные, у антисимметричных состояний — нечётные. Поэтому в осн. полосах 9,4 мкм и 10,4 мкм (см. табл. и рис. 2) и соответствующих полосах секвенции (00 i ->10 i —l,02°ii—1) существуют только переходы F- и Л-ветви /- /—1) и (7-+Л-1), J — вращательное квантовое число ниж. уровня перехода (см.  [c.442]

Эффект Ренера заключается во взаимодействии колебательных уровней двух электронных состояний, которые становятся вырожденными в линейной конфигурации молекулы. В многоатомных молекулах, которые редко бывают в линейной конфигурации, важное значение может иметь другой эффект, получивший название эффекта Яна —Теллера [66, 144 ]. Эффект Яна — Теллера называется динамическим, если взаимодействуют колебательные уровни двух электронных состояний, для которых поверхности потенциальной энергии молекулы пересекаются при некоторой (симметричной) конфигурации ядер [49]. Если многоатомная молекула при некоторой симметричной конфигурации ядер имеет вырожденные электронные состояния и вырождение связано с симметрией электронного гамильтониана для этой конфигурации ядер, то при определенных искажениях конфигурации ядер такие вырожденные состояния расщепляются [66]. Это явление называется статическим эффектом Яна — Теллера, а минимумы получаемых при этом потенциальных поверхностей соответствуют несимметричной конфигурации ядер. Прн рассмотрении взаимодействий между уровнями таких элек-  [c.328]

Такое вырождение возникает из-за того, что симметрия электронного гамильтониана в линейной конфигурации молекулы (т. е. Do h см. гл. 12) выше, чем в нелинейной конфигурации (т. е. av). Однако симметрия ровибронного гамильтониана не приводит к возникновению вырождения, а совместной группой МС для всех четырех электронных состояний NO2 является группа 2v(M) или группа ППИЯ (полная группа перестановок и инверсий) ядер молекулы. Из неэмпирических (аЬ initio) расчетов следует, что энергия состояния В имеет минимум в изогнутой конфигурации с неравными длинами связей [65]. Однако из-за наличия небольшого потенциального барьера между симметрично-эквивалентными формами имеет место туннелирование и группой МС электронного состояния В является группа 2v(M).  [c.338]

Если молекула принадлежит к точечной группе оол. т. е. имеет центр симметрии, то чередующиеся вращательные уровни имеют различные статистические веса, как и в случае двухатомной молекулы, имеющей одинаковые ядра. При равенстве спинов всех ядер нулю (исключение возможно лишь для одного ядра, находящегося в центре симметрии) антисимметричные вращательные уровни отсутствуют вовсе, т. е. для электронных состояний отсутствуют нечетные вращательные уровни ). Это имеет место в случае молекул С0.2 и С3О2, так как они являются линейными и симметричными (точечная группа Ооо/с)- Если одна или несколько пар ядер, не находящихся в центре, имеют спин 1 рО, то присутствуют все вращательные уровни, однако четные и нечетные уровни будут обладать различными статистическими весами. Если имеется только одна пара одинаковых ядер со спином 1 0 (только этот случай до сих пор и изучался экспериментально), то легко видеть, что так же как и в случае двухатомных молекул (Молекулярные спектры I, гл. 1И, 2), отношения статистических весов симметричных и антисимметричных вращательных уровней будет равно (/-(-1)// или //(/- -/), в зависимости от того, подчиняются ли ядра статистике Бозе или статистике Ферми. Можно  [c.28]


В случае линейных молекул с центром симметрии (принадлежащих к точечной группе >00 л, как, например, молекулы СО и С Н ) положительные вращательные уровни являются симметричными, отрицательные — антисимметричными по отношению к одновременной перестановке всех пар одинаковых ядер. Это имеет место для всех колебательных уровней, являющихся симметричными по отношению к инверсии (типы симметрии И, П , g,...) обратное соотношение имеет место для всех колебательных уровней, антисимметричных по отнопюнию к инверсии (типы симметрии П , Д ,. ..). На фиг. 99, б" показано несколько примеров. Все эти соотношения аналогичны соотношениям для различных электронных состояний двухатомных молекул их доказательство совершенно аналогично приведенному в книге Молекулярные спектры I, гл. V, 2, если рассматриваемые там электронные собственные функции заменить колебательными собственными функциями.. Для двухатомных молекул колебательные собственные функции всегда полносимметричны в данном случае предполагается, что электронная собственная функция является полносимметричной. Последнее утверждение практически всегда справедливо для электронного основного состояния, но не всегда справедливо для возбужденных электронных состояний, для которых поэтому нужно применять другие правила.  [c.400]

Классификация электронных состояний, В уравнении Шредингера для движения электронов (1,5) величина Уе обозначает потенциальную энергию электронов в поле ядер (неподвижных). Как указано выше, в первом приближении (которое, как правило, является хорошим) мы можем рассматривать движение электронов при равновесном положении ядер. Поэтому функция Уе У 1меет ту же симметрию, что и молекул(а в определенном электронном состоя- ти. Таким образом, уравнение Шредингера, описывающее электронное ч движение, не изменяется под действием операции симметрии. Следовательно, 4 лектронная волновая функция невырожденного состояния может быть 4 олько симметричной или антисимметричной по отношению к каждой из оне-. Ч аций симметрии, допускаемых симметрией молекулы в равновесном ноло- ении, т. е. она либо остается неизменной, либо только меняет знак. В случае вырожденных состояний собственная функция может превращаться только в линейную комбинацию двух (или более) вырожденных волновых функций, так что квадрат волновой функции, представляющий собой электронную плотность, остается неизменным. Различные волновые функции могут вести себя по-разному по отношению к различным операциям симметрии данной точечной группы но, как правило, не все элементы симметрии точечной группы независимы друг от друга, поэтому возможны лишь определенные комбинации поведения волновых функций по отношению к операциям симметрии. Такие комбинации свойств симметрии называются типами симметрии (см. [23], стр. 118). На языке теории групп это неприводимые представления ])ассматриваемой точечной группы. Каждая электронная волновая функция, а следовательно, и каждое электронное состояние принадлежат к одному из возможных типов симметрии (представлений) точечной группы молекулы  [c.17]

Ф и г. 2. Электронно-колебательные типы колебательных уровней в электронных состояниях 2+, П и А линейных молекул. Индексы g или и в скобках обозначают типы электронно-колебательных состояний симметричных лип01птых молекул (точечная группа Вал).  [c.31]

В трехатомной линейной молекуле может быть только один вид деформационных колебаний. Если молекула несимметрична (XYZ), то изогнутая конфигурация имеет симметрию С , а если симметрична (XY2) —то симметрию Сав- первом случае все вырожденные электронные состояния П, Д,. .. при г Ф О расщепляются каждое на одно состояние А и одно А". Во втором случае типы изогнутых конфигураций различны для разных типов вырожденных состояний. Электронное состояние Ilg расщепляется на А и В2, Пи — на Ах -j- Вх Ag — на Ах г Д на А -]- В . (Более подробно это будет показано в гл. 111, разд. 1.) В каждом случае электронная волновая функция одной компоненты симметрична по отношению к плоскости молекулы, а другой антисимметрична. Принятые обозначения типов А, А" или Ах, В X ИТ. д. можно было бы приписать двум потенциальным функциям F+ и F . Однако, вообще говоря, невозможно сказать, коррелирует F+ с А и F с А" или наоборот. Иногда две компоненты, соответствующие функциям F+ и F , обозначаются П + П " или Д + , Д " и т. д. Эти обозначения не следует путать с П+, П", Д+, А ,. . . , которые используются, чтобы различать две I- или А-компонепть состояния П, А,. ...  [c.35]

Вращательные уровни для вырожденных колебательных уровней невырожденных синглетных электронных состояний. В вырожденных колебательных состояниях (которые существуют для всех молекул, действительно относящихся к типу симметричного волчка) при вращении молекулы корио-лисовы силы приводят к снятию вырождения (Теллер и Тиса [1198) и Теллер [11961), причем расщепление уровней в первом приближении возрастает линейно с увеличением квантового числа К (см. [23], стр. 429). Это расщепление обусловлено тем, что момент количества движения относительно оси волчка Khl2n представляет собой сумму вращательного и колебательного членов. Последний равен /i/2n (см. стр. 67), и поэтому вращательный член равен К ) hl2n, где знак минус ставится, когда колебательный момент параллелен вектору К, а знак плюс — когда он антинараллелеп. Поэтому в формулах вращательной энергии (1,102) и (1,106) надо заменить АК на А (К и СК на С К ц- соответственно. Эта замена означает, что к уравнению (1,102) для вытянутого волчка надо прибавить член  [c.87]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]

Изогнутая трехатомная молекула, образовавшаяся (при возбуждении) из несимметричной линейной молекулы, относится к точечной группе s, а из симметричной линейной молекулы — к точечной группе v с осью симметрии второго порядка (Сг) в плоскости изогнутой молекулы. Для изогнутых молекул с четырьмя, пятью и более атомами, которые образуются из симметричных линейных молекул, точечные группы могут также быть ih, С 2 и i. Более подробно мы рассмотрим только три случая С , - h и s- На фиг. 81 показаны переходы между первыми вращательными уровнями для четырех различных типов изогнуто-линейных переходов в случае, когда верхнее состояние молекулы относится к точечной группе С и, а в нижнем ( Sg) состоянии молекула линейна (точечная группа Do h). Свойства симметрии враш ательпых уровней приведены для четырех типов электронно-колебательных уровней точечной группы С2в- В скобках приводятся соответствуюш ие типы для группы С2h- При этом предполагается, что в случае точечной группы ось С 2 направлена по оси Ь, а в случае С ал — по оси с. Примененная здесь классификация врап ательных уровней по свойствам симметрии соответствует вращательной подгруппе, а не полной группе симметрии (гл. I, разд. 3,г). Для точечной группы s две левые схемы соответствуют состоянию типа А, две правых — состоянию типа А". Кроме того, для этой точечной группы вращательная подгруппа не обладает никакой симметрией, и, следовательно, обозначения А ж В вращательных уровней могут быть опущены. В нижнем состоянии, для которого приведен только самый низкий колебательный уровень (Z = 0), свойства симметрии S ж а онределены, разумеется, лишь для симметричных молекул. Помимо полных типов симметрии, на схеме обозначены также свойства симметрии вращательных уровней (+или—) в соответствии с правилами, приведенными в гл. I, разд. 3,а и 3,г (где рассматривается поведение волновой функции при инверсии).  [c.196]


Лазер на двуокиси углерода. В молекулах двуокиси углерода лазерная генерация происходит между парами колебательных уровней основного электронного состояния (рис. 5.26). В трехатомной линейной молекуле СОг имеются три невырожденные моды колебаний 1) симметричная (у]00), 2) изгибовая  [c.208]

В молекулах с четным числом электронов спиновая функция, а следовательно, и спин-орбитальная функция имеют только однозначные представления точно так же, как орбитальная функция, и поэтому к этим молекулам без изменений применима общая теорема любое состояние с вырожденной спин-орбитальной функцией нестабильно в симметричной конфигурации, так как всегда имеется неполносимметричная нормальная координата, от которой потенциальная энергия зависит линейно (табл. 2). Например, в орби-тально нестабильном состоянии молекулы группы Сз спин вызывает расщепление на состояния - Е Е (см. стр. 25), из которых  [c.56]

Верхнее состояние без устойчивого равновесного положения. Если верхнее состояние не имеет устойчивого равновесного положения (или только очень мелкий минимум), могут возникнуть некоторые дополнительные возможности диссоциации. В качестве примера рассмотрим линейную симметричную молекулу ХУг, для которой верхнее состояние имеет такую нотенциальную поверхность, как показано на фиг. 173. Она состоит, по существу, из двух долин, которые ведут к диагонали, где имеется или хребет, как на фиг. 173, или очень неглубокая яма при больших = Гг. Математическое выражение для такой потенциальной функции, выведенное через функции Морзе для соответствующих двухатомных молекул, было недавно дано Уоллом и Портером [1258]. Если верхнее состояние электронного перехода имеет такую потенциальную функцию, то будет прямая диссоциация на У г ХУ почти для любой точки, достигаемой при поглощении света. Несомненно, из-за кривизны каждой из долин фигуративная точка не будет следовать ио почти прямой линии вдоль низа долины, а будут наблюдаться колебания с одной стороны на другую, когда точка покидает долину, как показано на фиг. 173. Тем не менее этот процесс должен быть все же классифицирован как прямая диссоциация, так как требующееся время, по существу, то же самое, как и в случае, когда нет вторичного колебания. Это вторичное колебание фигуративной точки сохраняется для больших значений Г1 (или Гг) и соответствует колебательной энергии молекулы ХУ, которая образуется в процессе диссоциации.  [c.463]


Смотреть страницы где упоминается термин Линейные молекулы симметричные, электронные состояни : [c.167]    [c.64]    [c.31]    [c.74]    [c.91]    [c.139]    [c.510]    [c.510]    [c.466]    [c.688]   
Электронные спектры и строение многоатомных молекул (1969) -- [ c.286 ]



ПОИСК



274, 323—327 симметричный

XYa, молекулы, линейные, симметричные

Г-состояния, F-состояния электронные

Линейные молекулы

Симметричное состояние

Состояние линейное

Состояние электронов

Типы симметрии электронных состояний симметричных линейных молекул (Dooh), соответствующих одинаковым состояниям разъединенных эквивалентных групп атомов

Электронные для линейных молекул

Электронные состояния

Электронные состояния молекул



© 2025 Mash-xxl.info Реклама на сайте