Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Кислород ионизированного газа

Рис. 37-4. Принципиальная тепловая схема комбинированной (МГД-генератора и нормальной) электрической станции / — топочная камера 2 — электроды 3 — электромагнит, создающий магнитное поле 4 — канал для ионизированного газа 5 — воздухопровод 6 — воздухоподогреватель 7 - пароперегреватель 8 - экономайзерная и испарительная поверхность нагрева котельного агрегата 9 — дымовая труба 10 — преобразователь постоянного тока в переменный II — воздушный компрессор 12 — устройство для обогащения воздуха кислородом 13 — паровая турбина 14 — конденсатор 15 — конденсатный насос б - электрический генератор переменного тока Рис. 37-4. <a href="/info/94711">Принципиальная тепловая схема</a> комбинированной (МГД-генератора и нормальной) <a href="/info/918">электрической станции</a> / — <a href="/info/105935">топочная камера</a> 2 — электроды 3 — электромагнит, создающий <a href="/info/20176">магнитное поле</a> 4 — канал для <a href="/info/198109">ионизированного газа</a> 5 — воздухопровод 6 — воздухоподогреватель 7 - пароперегреватель 8 - экономайзерная и испарительная поверхность нагрева <a href="/info/94471">котельного агрегата</a> 9 — <a href="/info/30230">дымовая труба</a> 10 — преобразователь <a href="/info/461800">постоянного тока</a> в переменный II — <a href="/info/106887">воздушный компрессор</a> 12 — устройство для обогащения воздуха кислородом 13 — <a href="/info/885">паровая турбина</a> 14 — конденсатор 15 — <a href="/info/27435">конденсатный насос</a> б - <a href="/info/35635">электрический генератор</a> переменного тока

Ионизированный газ обладает большим запасом потенциальной энергии, накопившейся при поглощении энергии ионизирующих частиц или квантов. Так, например, 1 моль кислорода, полностью диссоциированного на атомы, содержит 117 ккал энергии или 3650 ккал на 1 кг, т. е. почти в 6 раз больше, чем содержит 1 кг горючей смеси паров бензина с воздухом стехиометрического состава.  [c.381]

Атмосферы нефтегазоконденсатных комплексов отличаются высоким содержанием газов, солей, агрессивных компонентов, и по характеру микроклиматических условий они относятся в основном к жестким и очень жестким условиям. Разрушению под действием атмосферной коррозии подвергаются металлические нефтепромысловые сооружения и коммуникации, промысловые и магистральные нефтегазопроводы, сеть водоводов и резервуаров, морские нефтепромысловые сооружения, эстакады, кустовые площадки, индивидуальные основания, оборудование нефтегазоперерабатывающих заводов и др. Известно, что коррозия металлов в атмосферных условиях протекает под слоем влаги и определяется скоростью адсорбции или генерации на поверхности ионизированных частиц, способных вытеснять хемосорбированный кислород из поверхностного слоя металла. Для большинства конструкционных материалов наибольшее ускорение коррозионных процессов определяется наличием в атмосфере примесей сернистого газа, сероводорода, ионов хлора, а также загрязненностью воздуха пылью и аэрозолями, которые становятся центрами капиллярной конденсации влаги.  [c.50]

Тот же метод может быть применен к смеси газов, если относительное содержание компонентов известно. Возьмем в качестве примера упомянутую выше дугу в водяной трубке . Ниже температуры 25 000° К газ в дуге этой трубки будет состоять из нейтрального и ионизированного водорода, а также нейтрального и однократно ионизированного кислорода и электронов. Формула Саха может быть применена к обоим компонентам  [c.311]

Физико-химическое воздействие дуги на обрабатываемый материал. Плазменная дуга представляет собой поток ионизированных газов, с помощью которого нагревается поверхность заготовки. Зона нагрева отличается высокими температурами и градиентами их изменения, а также наличием участков, где материал находится в расплавленном виде. При этом химический состав нагреваемой поверхности металла может претерпеть изменения в связи с растворением в нем тех или иных компонентов плазмообразующего газа, а также с диффузией тяжелых элементов в поле напряжений. Кислород, азот и особенно водород, проникая в поверхностные слои заготовки, способствуют созданию в металле пор, снижению пластичности последнего, появлению хрупких трещин в процессе охлаждения. Для сил резания и дробления стружки эти явления могут быть благоприятными. Однако нельзя допускать растворения газов в материале заготовки под обработанной поверхностью, так как это в дальнейшем может отразиться на эксплуатационных характеристиках детали. При нагревании металлов воздушной плазмой (при черновом и получистовом точении заготовок) насыщения газами материала обработанной поверхности детали не обнаружено. Что же касается слоя металла, подвергшегося непосредственному воздействию плазменной дуги и перешедшему в дальнейшем в стружку, то анализ показал насыщение стружки газами. Так, в образцах из стали 12Х18Н9Т, подвергшихся воздействию воздушной плазменной дуги мощностью 15 кВт, обнаружено существенное увеличение содержания кислорода и азота. Аналогичные данные были получены при анализе образцов из высокохромистого чугуна. Повышение процентного содержания газов в образцах было тем большим, чем продолжительнее было воздействие плазменной дуги, что связано со скоростью перемещения ее по отношению к нагреваемой поверхности. При и = 8 м/мин содержание кислорода и азота в стальных образцах доходило соответственно до 0,05 и 2,12%, тогда как в исходном материале оно составляло 0,0025 и 0,005%. В чугунных образцах в тех же условиях обнаружено 0,03% кислорода (в исходном материале 0,005%) и 8,8 см на 100 г содержание водорода (в матрице 5,48 см ЮО г).  [c.77]


Среди полуавтоматических и автоматических способов сварки значительное место заслуженно завоевала сварка в углекислом газе, полностью исключающая проникновение ионизированного азота воздуха в сварной шов и, следовательно, его охрупчивание. Этот способ характеризуется высокой производительностью и низкой стоимостью и находит все большее применение для сварки малоуглеродистых, низколегированных и некоторых высоколегированных сталей. Углекислый газ поставляют в сжиженном состоянии в стальных баллонах вместимостью 40 л, в которых под давлением 7,5 МПа содержится 25 л жидкой углекислоты, что соответствует 12,7 м газообразной углекислоты. Углекислый газ СОг при высокой температуре дуги разлагается на оксид углерода СО и атомарный кислород О. Для нейтрализации его окислительного воздействия используют проволоку с повышенным содержанием марганца и кремния, которые имеют большее сродство с кислородом, чем железо (марок СВ-08ГСА Св-08Г2СА).  [c.170]

Время от времени возникает вопрос о тохм, влияет ли ионизация газов на скорость окисления металлов, с которыми они приходят в соприкосновение. Этим вопросом интересовался Драв-никс [556], исследовавший влияние ионизации различных газов на скорость окисления тех или иных металлов. Его опыты показали, что в активированном и обычном кислороде при давлении 0,5 мм рт. ст. скорость окисления тантала (500° С), циркония (600 и 986° С), никеля (690° С) и меди (690° С) фактически оставалось неиз.менной. Действие ионизированного и обычного (су.хото) воздуха (р = 0,6 мм рт. ст.) на цирконий при 986° С также было одинаковым. Соответствующие исследования при 986° С с водяным паро.м, углекислым газом и моноокисью углерода при низком давлении (0,3—0,6 мм рт. ст.) -показали незначительную разницу в действии ионизированных и -обычных газов, а именно действие ионизированной двуокиси углерода СОг оказалось сильнее, а действие Н 0 и СО слабее действия соот-  [c.219]


Смотреть страницы где упоминается термин Кислород ионизированного газа : [c.758]    [c.106]    [c.250]   
Справочник по теплофизическим свойствам газов и жидкостей (1963) -- [ c.424 , c.426 ]



ПОИСК



Газ ионизированный

Кислород



© 2025 Mash-xxl.info Реклама на сайте