Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лазерная генерация пороговая инверсия

Метод модуляции добротности [22] позволяет получать лазерную генерацию в виде коротких импульсов (длительностью от нескольких наносекунд до нескольких десятков наносекунд) с высокой пиковой мощностью (от нескольких мегаватт до нескольких десятков мегаватт). Основная идея метода состоит в следующем. Предположим, что в резонатор лазера помещен затвор. Если затвор закрыт, то генерация возникнуть не может и инверсия населенностей может достичь значения, которое намного превышает пороговое, имеющее место в отсутствие затвора. Если теперь резко открыть затвор, то усиление в лазере существенно превысит потери и накопленная энергия выделится в виде короткого и интенсивного светового импульса. Поскольку при этом происходит переключение добротности резонатора от низкого к высокому значению, то данный метод называется модуляцией добротности.  [c.284]


Суть метода модуляции добротности заключается в следующем. Если убрать одно из зеркал, то фотоны будут иметь очень короткое время жизни в активной среде. Даже при очень интенсивной накачке пороговое условие генерации не может быть выполнено и лазер генерировать не будет. Поскольку в процессе лазерной генерации инверсия падает, в отсутствие зеркала можно достичь очень большой инверсии, пока нет генерации. Если затем резко поставить зеркало в его правильное положение, начнется генерация с с очень большой начальной инверсией. Так как в уравнении (4.12) разность 0 Х —2 и очень велика, можно ожидать экспоненциального лавинообразного нарастания числа фотонов п, т. е. должен испускаться гигантский импульс. Энергия в импульсе и его ширина будут ограничены, согласно (4.11), большим числом фотонов п в последнем члене этого уравнения, который уменьшает инверсию. Этим в соответствии с (4.12) будет замедляться увеличение числа  [c.88]

Поэтому длительность импульса накачки должна быть приблизительно равна этому времени нарастания. В рассмотренных нами условиях максимальное значение инверсии может в 4— 10 раз превосходить пороговое значение, поэтому возможна генерация лазерного импульса высокой пиковой мощности и малой длительности.  [c.305]

Инверсная населенность и генерация на ионизованных атомах в газовом разряде получена на переходах, принадлежащих 29 элементам. Так как для работы лазеров данного типа требуется значительная ионизация, пороговые плотности тока через разряд значительно выше, чем для лазеров на нейтральных атомах. Процесс создания инверсии обычно протекает в две ступени сначала электронным ударом вызывается ионизация, а затем уже происходит возбуждение ионов в верхнее лазерное состояние. Механизмы возбуждения на второй ступени во многом подобны механизмам, описанным в разд. 33.1.  [c.698]

Происходящие при этом физические явления можно относительно просто описать, обращаясь к случаю пичковой генерации, представленной на рис. 5.24. Если предположить, что скорость накачки Wp = Wp t) имеет форму прямоугольного импульса, начинающегося при / = 0 и заканчивающегося при / = = 5 МКС, то излучение будет состоять лишь из первого пичка в изображенной на рисунке зависимости q(t), который возникает в момент времени около t = 5 мкс. Действительно, после генерации этого пичка инверсия будет уменьшена световым импульсом до уровня, который существенно ниже порогового и который не будет затем возрастать, поскольку накачка уже отсутствует. Таким образом, мы видим, что модуляция усиления по своему характеру аналогична пичковой генерации в лазере, рассмотренной в разд. 5.4.1. Заметим, что на практике временная зависимость накачки имеет вид колоколообразного импульса, а непрямоугольного. В этом случае мы будем считать, что максимум светового пичка соответствует спаду импульса накачки. Действительно, если бы максимум совпадал, например, с максимумом импульса накачки, то после генерации пичка оставалось бы достаточно энергии накачки, чтобы инверсия могла снова вырасти до значения выше порогового и, таким образом, в лазерной генерации появился бы второй пичок, хотя и меньшей интенсивности. Напротив, если бы число фотонов достигало максимума значительно позже на хвосте импульса накачки, то это означало бы, что накачка не была достаточно продолжительной, чтобы инверсия населенностей выросла до приемлемо высокого уровня. Из вышесказанного можно заключить, что для данного значения максимальной скорости накачки существует некоторая оптимальная длительность импульса. Если это максимальное значение увеличивается, то число фотонов нарастает быстрее и тогда необходимо уменьшить длительность импульса накачки. Можно также показать, что при увеличении максимальной скорости накачки возрастает максимальная инверсия и генерируется более короткий и интенсивный импульс. Для четырехуровневых лазеров типичные значения времени нарастания интенсивности лазерного излучения до своего пикового значения в зависимости от максимального значения скорости накачки могут составлять 5 Тс —20 Тс, где Тс время жизни фотона в резонаторе  [c.304]


Качественно эффект самоохлаждения можно понять следующим образом. При непрерывной накачке из состояния g в полосу поглощения (состояние 3) со скоростью П, мощность которой выше пороговой, в резонаторе лазера накапливается когерентное электрическое поле большой амплитуды. Оно вызывает быстрые индуцированные переходы между состояниями 1 и 2 со скоростью В. Инверсия населённостей этих состояний принимает такое значение, чтобы скомпенсировать все потери, которые связаны как с выходом излучения из резонатора, так и с оттоком части энергии поля на примесь иттербия. Поскольку длина волны генерации попадает в длинноволновое крыло линии поглощения иттербия, то величина Ь составляет небольшую долю от скорости В и потери на иттербии обусловлены главным образом скоростями спонтанной люминесценции иттербия а и а. Пусть О нагрев лазера преимущественно обусловлен безызлучательными переходами лазерных ионов из состояния 3 в состояние 2, сопровождающимися рождением фонона с энергией Ш32, и скоростью накачки П. Величина расщепления Ш32 в два-три раза меньше, чем величина расщепления основного состояния ионов иттербия 1г0.2 , на нижний подуровень которого происходит спонтанное излучение в анистоксовой области, приводящее к охлаждению. Понятно, что существует некое соотношение между значениями скоростей П,А,В и Ь,а,а, при котором процесс охлаждения будет компенсировать или даже превосходить процесс нагрева.  [c.156]

Предположим, что генерация начинается при достижении инверсии порядка 1%. Тогда характерное значение пороговой скорости накачки Пег примерно в сто раз меньше А. Договоримся все скорости выражать в скоростях спонтанного распада верхнего лазерного уровня А. Оценим скорости индуцированных переходов. Пусть в режиме генерации скорость накачки П на порядок превышает пороговое значение, т. е. П = ЮПсг = 0,1 А. В свою очередь, для В из формул (4.91) и (4.92) получаем  [c.165]

О), создавая тем самым условия для начала генерации. Усиление за проход системы теперь заметно превышает пороговое значение, в результате чего происходит быстрое нарастание генерации лазерного излучения, преобразующей энергию инверсии населенностей в энергию электромагнитного излучения. При  [c.185]


Смотреть страницы где упоминается термин Лазерная генерация пороговая инверсия : [c.170]    [c.244]    [c.739]   
Принципы лазеров (1990) -- [ c.246 , c.250 ]



ПОИСК



Генерация

Инверсия

Лазерная генерация

Лазерное (-ая, -ый)



© 2025 Mash-xxl.info Реклама на сайте