Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Схемы с компактными аппроксимациями третьего порядка

Формулы компактного численного дифференцирования, обеспечивающие пятый порядок аппроксимации. Трехточечные формулы (4.11), свя-зьшающие значения в узлах функции и, а также значения в узлах разностных аналогов ее первых и вторых производных (с и г), содержат большее количество коэффициентов, чем аналогичные формулы, связьшающие значения функций и к д. Отсюда естественным образом возникает идея использовать эти дополнительные коэффициенты для построения таких соотношений, которые позволили бы определить д к г как аппроксимации производных функций, обладающие более высоким, чем третий, порядком аппроксимации. Если бы такие аппроксимации имели благоприятные свойства, то их использование в качестве составной части схемы для уравнения (4.8) было бы вполне разумным, поскольку процесс решения разностных уравнений оказался бы не более сложном, чем в случае схемы третьего порядка (4.10). Для уравнения первого порядка (4.1) функция и является лишней, однако может оказаться, что применеше векторных прогонок с матрицами 2X2 вместо скалярных прогонок является разумной платой за высокую точность и другие положительные свойства схемы.  [c.107]



Смотреть главы в:

Компактные разностные схемы и их применение в задачах аэрогидродинамики  -> Схемы с компактными аппроксимациями третьего порядка



ПОИСК



Аппроксимация

Другие подходы к построению схем третьего и более высоких порядков Аппроксимация уравнений, записанных в недивергентном виде j Повышение порядка несимметричных компактных аппроксимаций J Симметризация схем третьего порядка. Центрированные компактные схемы четвертого порядка

Порядок аппроксимации

Схема 1-го порядка аппроксимации



© 2025 Mash-xxl.info Реклама на сайте