Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Пьезопреобразователи электрических сигналов

ПЬЕЗОПРЕОБРАЗОВАТЕЛИ ЭЛЕКТРИЧЕСКИХ СИГНАЛОВ  [c.146]

Пьезопреобразователи электрических сигналов (резонаторы, фильтры, линии задержки, устройства свертки сигналов и др.) делятся на две основные группы. В первой группе используются объемные акустические волны, где находят применение резонансные свойства и особенности распространения упругих волн в объеме пьезоэлектрика.  [c.672]


Преобразователь акустической эмиссии служит для преобразования упругих акустических колебаний в электрические сигналы и является важнейшим элементом аппаратного комплекса АЭ контроля. Наибольшее распространение нашли пьезоэлектрические ПАЭ, схема которых мало отличается от пьезопреобразователей (ПЭП), используемых при проведении ультразвукового контроля.  [c.168]

Генератор 1 возбуждает прямой контактный совмещенный пьезопреобразователь 2. Ультразвуковые импульсы через протектор 3 и слой контактной среды 4 попадают в контролируемое изделие 5, отразившись от его дна, возвращаются на преобразователь и преобразуются им в электрические импульсы, которые через усилитель 6 поступают на вход В измерителя временных 7 интервалов. На вход А измерителя поступают сигналы с того же генератора 1. Измеритель 7 преобразует временной интервал между моментами посылки ультразвукового импульса в изделие и приема донного эхо-сигнала в серию импульсов, число  [c.278]

Для выявления дефектов применяют специальные приборы — ультразвуковые дефектоскопы (рис. 116). Принцип работы ультразвукового дефектоскопа основан на посылке в контролируемое изделие коротких импульсов ультразвуковых волн и приеме отраженных эхо-сигналов. При помощи генератора электрических импульсов возбуждается кварцевый пьезопреобразователь (щуп) искательной головки 2, который излучает импульсы упругих колебаний в контролируемое изделие 1. Упругий импульс распространяется в металле в виде направленного пучка.  [c.194]

Пьезопреобразователи электрических сигналов (резонаторы, фильтры, линии задержки, устройства свертки сигналов и др.) делятся на две основные группы, использующие соответственно объемные и поверхностные акустические волны (ПАВ). В первой группе преобразователей используются резонансные свойства и особенности распространения упругих волн в объеме пьезоэлектрика. Вторая группа преобразователей сигналов основана на амплитудно-фазовых изменениях спектров сигналов, происходящих при возбуждении, распространении и детектировании акустичес-  [c.131]

Ультразвуковые дефектоскопы предназначены для излучения ультразвуковых колебаний, приема эхо-сигналов, установления положения и размеров дефектов. Простейшая структурная схема эходефектоскопа изображена на рис. 6.22, о. Здесьгенератор I возбуждает короткие электрические импульсы и подает их на излучатель 2, который работает как пьезопреобразователь и преобразует данные импульсы в ультразвуковые колебания (УЗК). УЗК распространяются в объект контроля (ОК) 3, отражаются от дефекта и противоположной стороны ОК, принимаются приемником 4 (излучатель и приемник может быть одним и тем же элементом при совмещегшой схеме пьезопреобразователя). Приемник 4 превращает УЗК в электрические сигналы и подает их на усилитель 5, а затем на вертикально отклоняющие пластины электронно-лучевой трубки, на которой формируются пики импульсов I, II, III (верхняя часть рисунка), характеризующие амплитуду эхо-сигналов. Одновременно с запуском генератора импульсов 1 (или с некоторой заданной задержкой во времени) начинает работать генератор развертки 7. Правильную временную последовательность их включения и работы (а также правильную последовательность работы других узлов дефектоскопа, не показанных на рисунке) обеспечивает синхронизатор 6. Синхронизатор приводит в действие генератор развертки 7. Сигнал, поступающий на генератор развертки 7, направляется на гори-зонтально-отклоняющие пластины электронно-лучевой трубки. При этом на электронно-лучевой трубке появляется горизонтальная линия (линия развертки дефектоскопа), расстояние между пиками пропорционально пути импульса от излучателя до отражателя и обратно. Таким образом, развертка позволяет различать по времени прихода сигналы от различных отражателей ультразвука (от дефекта II, донный III) и их отклонение от зондирующего I.  [c.178]


Высокой чувствительностью (10 ) к изменению скорости упругих волн обладает метод автоциркуляции импульса [68]. Генератор (рис. 9.3) возбуждает передающий пьезопреобразователь. При этом образуется импульс, заполненный высокочастотными колебаниями (10 МГц). В образце 4 возникает серия отраженных импульсов. Пьезопреобразователь превращает их в электрические сигналы, приемник усиливает, а селектор 10 периода выделяет я-й импульс и направляет его через усилитель запуска импульсов 1 на генератор для возбуждения новой серии импульсов. Система работает в автоколебательном режиме. Измеритель времени п заданных периодов определяет время следования импульсов. Для точного определения времени прохождения импульса через образец надо знать не только период следования импульсов, но и число периодов заполнения на временном интервале импульса. Для этого с помощью длительной задержки 12 времени, детектора 7 и селектора отраженных импульсов 10 выделяется один  [c.414]

Попробуем разобраться, чему должна равняться частота дискретизации акустических сигналов. Пусть сигналы регистрируют с помощью недемпфированного преобразователя, собственная частота которого составляет /о = 100 кГц, а добротность 0 = 10. В этом случае единичный механический импульс, возникший в момент времени i = О, приведет к электрическому сигнапу на пьезопреобразователе, представляющему собой затухающую по экспонен-  [c.134]

Оценим эту величину. Максимальное регистрируемое без искажений значение напряжения сигнала на выходе усилителя близок к напряжению питания, составляющего обычно для предварительного усилителя сигналов преобразователя величину порядка 10 В. Для линейного детектирования с помощью прецизионных детекторов на операционных усилителях необходима величина сигнала порядка 1 мВ. Следовательно, динамический диапазон (отношение максимального сигнала к минимальному) составит 10 ООО. Если коэффициент усиления усилителя составляет 100 (характерное значение), то напряжение максимального неискажаемого входного сигнала составит 0,1 В (100 мВ), а минимальное - 10 мкВ. Оценим величину электрического шума входного каскада. Приняв, что на входе усилителя сигналов пьезопреобразователя использован полевой транзистор с шумовым напряжением порядка 2 нВ/л/Гц (типовое значение для рассматриваемого частотного диапазона), для полосы частот 10 кГц получим шумовое напряжение 200 нВ - величину, которой можно  [c.135]


Смотреть страницы где упоминается термин Пьезопреобразователи электрических сигналов : [c.117]    [c.123]    [c.82]    [c.249]    [c.192]    [c.86]   
Смотреть главы в:

Диэлектрики Основные свойства и применения в электронике  -> Пьезопреобразователи электрических сигналов



ПОИСК



Сигнал

Сигнал электрический



© 2025 Mash-xxl.info Реклама на сайте