Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Особенности решения контактных задач методом конечных элементов

ОСОБЕННОСТИ РЕШЕНИЯ КОНТАКТНЫХ ЗАДАЧ /МЕТОДОМ КОНЕЧНЫХ ЭЛЕМЕНТОВ  [c.116]

В последнее десятилетие метод конечных элементов начал применяться к расчету шин [11.34, 11.41, 11.43, 11.47]. Этому способствовало и то обстоятельство, что за рубежом, в частности в США, были созданы программные комплексы, предназначенные в основном для нужд авиационной и ракетной техники, которыми можно пользоваться, не вдаваясь в детали самого метода. В результате из поля зрения ученых выпадал ряд эффектов, связанных с учетом таких специфических факторов, присущих радиальным шинам, как неоднородность, анизотропия деформативных свойств, низкая сдвиговая жесткость и т.д. Критический разбор работ, выполненных в этой области и опубликованных до 1980 года, содержится в обзорной статье [11.44]. К настоящему времени метод конечных элементов так и не удалось применить для решения контактной задачи, поставленной в полном объеме с учетом упомянутых особенностей современных шин.  [c.237]


Известно, что для тел сложной формы и со сложным характером нагружения наиболее целесообразной является итерационная схема решения контактных задач, предусматривающая использование одного из численных методов, например вариационно-разностного, или метода конечных элементов. В данном случае связь между нагрузками и перемещениями на каждом шаге итерации находилась при помощи метода конечных элементов, который позволил при расчете учесть особенности геометрии диска, наличие сил трения в зоне контакта пальцев с диском, возможную геометрическую нелинейность, связанную с большими перемещениями, и некоторые другие особенности. При решении задачи использовались четырехугольные изопараметрические элементы, позволившие сравнительно просто осуществить автоматизированную подготовку исходной информации и несколько уменьшить ширину ленты глобальной матрицы жесткости, что весьма существенно в условиях дефицита оперативной памяти вычислительной машины. Не останавливаясь на подробностях способа нахождения связи между нагрузками и перемещениями, который в принципе уже описан ранее, изложим непосредственно метод нахождения контактных напряжений на контурах отверстий упругого диска.  [c.76]

В монографии изложены результаты исследования напряженно-деформированного состояния контактирующих элементов конструкций, полученные с помощью метода конечных элементов и метода граничных интегральных уравнений, известного также под названием метод граничных элементов. Эти перспективные современные численные методы удобны для решения на ЭВМ широкого класса контактных задач механики деформируемого тела и в рамках одной программной реализации позволяют учесть большое число практически важных факторов, таких, как сложная геометрия и произвольный характер внешних воздействий, различные условия контактного взаимодействия. Метод конечных элементов представляется более универсальным, так как позволяег легко учесть физическую и геометрическую нелинейность, объемные силы, зависимость свойств материала от температуры. В методе граничных элементов учет этих факторов настолько увеличивает рудоемкость решения задачи, что сводит на нет основные преимущества метода, такие, как дискретизация только границы области и малый объем входной информации. Поэтому в книге метод граничных элементов использован только для решения контактных задач теории упругости, где наряду с простотой задания исходной информации он может дать и выигрыш машинного времени за счет понижения размерности задачи на единицу, особенно для бесконечных и полубесконечных областей. Метод граничных элементов позволяет построить также более совершенный алгоритм для учета трений в зоне контактных взаимодействий. По-виднмому, еще большего выигрыша следует ожидать в некогорых задачах при совместном использовании обоих методов.  [c.3]

Особенности напряженно-деформированного состояния механически неоднородных сварных соединений были исследованы нами на образцах-моделях с применением метода м>аровых полос, а также методом конечных элементов и линий скольжения /2, 81/. При этом степень механической неоднородности (соотношение свойств твердого и мягкого металлов = ст J / а ) варьировали таким образом, чтобы обеспечить совместное пластическое деформирование металлов на стадиях, близких к предельным Сочетание методов линий скольжения и конечных элементов при решении данной задачи позволило вскрыть некоторые закономерности, которые дали возможность учесть эффект неполной реализации контактного упрочнения мягких прослоек в рамках принятых допущений и подходов. В частности, на основании численных расчетов МКЭ и экспериментальных данных, было установлено, что  [c.103]


В книге приводится методологически последовательная постановка геометрически и физически нелинейных задач механики деформируемого твердого тела, в том числе задачи о потере устойчивости и контактных взаимодействиях тел. Уравнения формулируются относительно скоростей или приращений неизвестных величин. Приводятся слабые формы уравнений и вариационные формулировки задач. Рассматривается применение метода конечных элементов к решению квазистатических и динамических задач. Используются следующие модели материалов изотропная линейно-упругм, несжимаемая нелинейно-упругая Муни — Ривлина, упругопластическая, термоупругопластическая с учетом деформаций ползучести. Приводятся процедуры численных решений нелинейных задач, основанные на пошаговом интегрировании уравнений равновесия (движения). Рассматриваются особенности процедур численного решения задач о потере устойчивости и контакте тел.  [c.2]

Касаясь применения метода конечных элементов к расчету напря-женно-деформированного состояния резинотехнических изделий, в том числе и резиновых упругих элементов муфт, следует отметить особенности реализации этого метода, связанные со слабой сжимаемостью резины. Слабая сжимаемость материала, как указывалось ранее, приводит к существенному усложнению алгоритма решения задач, резкому возрастанию затрат машинной памяти и машинного времени, что особенно ощутимо при решении итерационных задач с учетом вязкоупругости, контактных задач и задач с переменными граничными условиями, требующих выполнения значительного числа шагов. Поэтому особое внимание должно быть уделено повышению эффективности алгоритма расчета резиновых деталей.  [c.12]

В трехмерной теории упругости в качестве тела, имеющего угловую линию часто брали четверть пространства [18,32,33,51-53,59,63-69], получая приближенные решения при помощи интегрального преобразования Фурье. Например, в работе [33] изучена задача о четверти пространства, жестко заделанной по одной стороне и нагруженной по другой нормальными и касательными усилиями. Для нормального напряжения в заделке составлено интегральное уравнение первого рода и исследован характер особенности решения вблизи ребра. Большой интерес к задачам для упругой четверти пространства проявляют американские и японские механики. Численный метод компенсирующих нагрузок был применен Хетени для получения общего решения для четверти пространства [66] (в западной печати эта задача теперь носит имя Хетени). Задача Хетени пересматривалась и алгоритм ее решения упрощался [65, 67], затем методом типа конечных элементов была рассмотрена контактная задача о действии прямоугольного штампа на упругую четверть пространства [68 .  [c.181]

В этой главе рассмотрены численные методы решения динамических контактных задач с односторонними ограничениями для упругих тел с трещинами. Изложены основы проекционных методов решения задач математической физики. Используя Эти методы, построены дискретные аналоги граничных интегральных уравнений системы линейных алгебраических уравнений метода граничных элементов. Приведены основные сведения о конечных элементах и интерполяционных полиномах, определенных на них. Рассмотрены вопросы численного интегрирования регулярных интегралов с особенностями сингулярных и гиперсингулярных, а также интегралов от быстро осциллирующих функций, изложены методы численного преобразования Лапласа и его обращения.  [c.136]

Не повторяя подробно весь алгоритм расчета, отметим здесь лишь основные его этапы, а также укажем на некоторые исходные предпосылки и особенности задания граничных условий. Сжатие резинового бурта оболочки происходит при сближении двух жестких штампов. Предполагается, что весь объем деформируемого в узле зашемления материала может смещаться лишь в направлении от оси муфты. Возникающие при этом силы трения подчиняются закону Кулона. Напряженное состояние бурта оболочки при сближении штампов рассматривается как осесимметричное при этом матрицы жесткости кольцевых конечных элементов, на которые в процессе решения задачи разбивается бурт оболочки, определяются согласно зависимости (1.25). В общем случае поверхности штампов (фланца полумуфты и прижимного кольца) могут иметь конфигурацию, отличную от ответных поверхностей бурта оболочки. При проведении расчетов задача о нагружении бурта оболочки решалась методом сил, поскольку он обеспечивает большую точность, чем метод перемещений, хотя алгоритм расчета в этом случае оказывается более сложным. Процесс нагружения бурта оболочки во избежание ошибок, связанных с проявлением эффектов конструкционной и геометрической нелинейностей, разбивался на ряд последовательных шагов. В пределах каждого шага с помощью итерационной процедуры устанавливались величины и характер распределения нормальных и касательных сил на контактной поверхности бурта. Суть итерационной процедуры состоит в следующем. Задается шаговое сближение штампов путем задания новых значений координат точек поверхности штампов, а также начальная система распределенных нормальных и касательных сил, которая в каждой узловой точке на поверхности контакта бурта дает составляющие Fri и F i (рис. 5.2).  [c.107]



Смотреть главы в:

Концентрация напряжений и деформаций в деталях машин  -> Особенности решения контактных задач методом конечных элементов



ПОИСК



Задача и метод

Задачи и методы их решения

Конечный элемент

Контактная задача

МЕТОДЫ РЕШЕНИЯ КОНТАКТНЫХ ЗАДАЧ

Метод конечных элементов

Метод контактный

Метод особенностей

Особенности метода конечных элементов

Особенности решений задачи л тел

Решения метод

Решения с особенностями

Элементы контактные



© 2025 Mash-xxl.info Реклама на сайте