Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Синхронизация динамических систем простая

Здесь мы дадим количественную теорию явления синхронизации автоколебательных систем на примере лампового генератора, принципиальная схема которого проведена на рис. 16.2. Как довести исследование подобной конкретной нелинейной динамической системы до чисел Один пример мы уже рассматривали — это автоколебания в системе, где удалось разделить быстрые и медленные движения. Формально такое разделение можно сделать, если в уравнениях при старшей производной имеется малый параметр. Его присутствие позволяет во многих случаях (не только, конечно, при анализе автоколебаний) понизить порядок исходной системы — проинтегрировать ее по участкам быстрых и медленных движений. Следует заметить, что большинство методов, позволяющих довести решение конкретной нелинейной задачи до конца без применения численного счета на ЭВМ, связано с наличием в системе малого параметра, т. е. фактически с близостью исследуемой системы к другой, более простой, а точнее, интегрируемой (хотя бы и приближенно). Другой случай, когда удается решить задачу аналитически, — он наиболее часто встречается в физике и различных приложениях — это, когда исходная нелинейная система близка к линейному осциллятору или нескольким осцилляторам. При этом решение близко к набору синусоид, однако их параметрами, очевидно, будут уже не числа, а медленно изменяющиеся функции времени.  [c.330]


Подчеркнем, что если нелинейность генератора не мала, то воздействие периодической силы может привести не только к синхронизации генератора или к работе системы в режиме биении (вне полосы захватывания или синхронизации), но и к установлению очень сложных режимов колебаний и даже колебаний со сплошным спектром. Такие колебания наблюдались недавно авторами работы [13] в неавтономном генераторе, который описывается уравнением вида х — lil —х )х+х = = В os Ш. В частности, при /х = О, 2, = 4,0 и В = 17,0 наблюдались колебания со сплошным спектром в интервале и) [0 4,5]. Возникновение стохастических колебаний в подобных сравнительно простых динамических системах мы будем подробно обсуждать в гл. 22.  [c.339]


Вибрационная механика (1994) -- [ c.154 ]



ПОИСК



227 — Синхронизация

Простейшие системы

Синхронизация динамических систем

Синхронизация простая

Система простая

Системы динамические



© 2025 Mash-xxl.info Реклама на сайте