Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Нейтральное подпространство

Понятие гиперболичности служит матем. выражением и конкретизацией свойства локальной неустойчивости траекторий. Обычно предполагается, что фазовым пространством системы служит нек-рое риманово многообразие (см. Риманово пространство) X, а динамика задаётся гладким отображением Т = Т Х- Х (случай каскада) или гладким векторным полем на X (случай потока). Наличие римановой структуры позволяет измерять длины кривых и объёмы подмножеств, принадлежащих X, а также длины векторов в касательных пространствах к X. Гиперболичность — это свойство отд. траекторий 0(х) = Т х , формулируемое в терминах касательных отображений (решений ур-ний в вариациях — в случае потока), отвечающих ДС Г . Его смысл в том, что при каждом г имеется три типа поведения точек, бесконечно близких к точке Т х при своём дальнейшем движении под действием ДС точки первого типа с экспоненциальной скоростью сближаются с траекторией точки х, точки второго типа с экспоненциальной скоростью удаляются от неё, а точки третьего (нейтрального) типа ведут себя промежуточным образом. Этим трём типам поведения отвечает представление касательного пространства к А" в точке Т х в виде прямой суммы подпространств, переходящих друг в друга вдоль траектории под действием касательных отображений. В случае каскада точек нейтрального типа может не быть совсем, а в случае потока они всегда есть — из таких точек состоит сама траектория 0(х). При изменении направления времени точки первого и второго типа меняются ролями, а точки третьего типа сохраняются.  [c.631]



Смотреть страницы где упоминается термин Нейтральное подпространство : [c.670]    [c.345]    [c.126]   
Динамические системы - 2 (1985) -- [ c.126 ]



ПОИСК



Ось нейтральная



© 2025 Mash-xxl.info Реклама на сайте