Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Два вихревых кольца в безграничной жидкости

Следующим после плоских вихревых движений обширным классом являются осесимметричные структуры. Характерным для этих образований является то, что вихревые линии здесь представляют собой замкнутые окружности, центры которых расположены на одной и той же прямой. Впервые такой класс движений вихрей в идеальной безграничной жидкости рассмотрен Г.Гельмгольцем (135). Он изучил общие свойства торообразной области завихренности (одиночного кольца) и в случае кольца малого конечного поперечного сечения показал, что оно движется, не изменяя радиуса центра тяжести поперечного сечения, с постоянной, но весьма большой скоростью, направленной в ту же сторону, в какую жидкость течет сквозь кольцо. В дальнейшем эта вихревая структура являлась предметом многочисленных исследований. Прежде всего это объясняется сравнительной легкостью формирования такого кольца, часто встречаюш.егося и в природе. Удивительным свойством была неоднократно отмечавшаяся способность кольца продвигаться на значительные расстояния, сохраняя во времени свою устойчивую форму. Так, например, отмечалось [5], что холостой выстрел из пушки производит вихревое кольцо диаметром  [c.178]


Рассмотрим вихревое кольцо меридионального сечения S (рис.62), расположенное в безграничной идеальной жидкости. Принимая, что  [c.185]

Пусть в безграничной несжимаемой идеальной жидкости движется N коаксиальных вихревых колец. Введем в пространстве цилиндрическую систему координат (г, (р, г) так, что ось г совпадает с прямой, соединяющей центры колец. Обозначим Еа — радиус кольца с номером а, — координату центра кольца на оси г, Гд, — его интенсивность. Задача состоит в определении временных зависимостей Ra t), и сводится к решению  [c.368]

Впервые возможность ситуации, когда в безграничной идеальной жидкости существует движущаяся осесимметричная область с отличной от нуля завихренностью, обсуждалась М.Хнллом [143]. В работах В.Хикса [ 139, 140 ] с привлечением созданной теории тороидальных функций рассмотрены различные варианты движения и колебаний одиночных вихревых колец конечного сечения. Эти результаты позволили уточнить приведенную в[ 111,238[приближенную формулу для скорости движения вихревого кольца. По богатству идей и фактического материала интересна работа Ф.Дайсона [121]  [c.181]

Суммируя сказанное, отметим, что сферический вихрь Хилла образует предельный случай семейстьа установив шихся осесимметричных вихревых образований, движущихся не меняя своей формы в безграничной идеальной жидкости. Другим типом такой вихревой структуры является вихревое кольцо.  [c.185]


Смотреть главы в:

Динамика вихревых структур  -> Два вихревых кольца в безграничной жидкости



ПОИСК



Вихревые усы

Кольцо вихревое



© 2025 Mash-xxl.info Реклама на сайте