Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Основные уравнения задачи Хилла

Задача, которую мы предполагаем теперь решить, заключается в нахождении некоторого частного решения этих уравнений, а именно того частного решения, которое соответствует случаю, в котором Е равно нулю. Так как мы пришли к тому, что хну разлагаются по синусам и косинусам кратных 2В или 2т, то м ы видим, что это частное решение является периодическим. Эта задача полностью была решена Хиллом "" ), и мы здесь изложим его основные результаты.  [c.477]

Соответствующую задачу мы называем для краткости з а-дачей Хилла. Мы изложим здесь вывод основных уравнений задачи Хилла и метод Ляпунова для нахождения периодических решений этой задачи в виде абсолютно сходящихся периодических рядов.  [c.271]


Но предположение о равенстве нулю эксцентриситета кепле-ровой орбиты точки Мг относительно Мо не играет никакой роли при выводе основных уравнений задачи Хилла. Поэтому мы предпочитаем вывести эти уравнения в несколько более общей форме, исходя из уравнений любой ограниченной задачи, данных Нехвилом.  [c.272]

Следует заметить, что уравнения (5.6) имеют тот же вид, что и основные уравнения поля линий скольжения в случае плоского течения жестко-идеально-пластических тел (см., например, [36]). Таким образом, стержни оптимальной фермы образуют сетку Генки — П ранд тля численные и графические методы, развитые для построения сеток этого типа, могут использоваться и для данных задач (см., например, книгу Хилла [38] и работу Прагера [39]). Отметим лишь одно из многих замечательных свойств сеток Генки — Прандтля. Касательные к двум произвольным линиям одного и того же семейства линий Генки — Прандтля в точках их пересечения с линией другого семейства образуют друг с другом угол, который не  [c.51]

Однако при проектировании современных машин часто приходится pa мafpивaть деформацию деталей за пределами упругости. В этом случае законы и уравнения теории упругости не могут быть применены, так как принятые ранее допущения об упругости материала не выполняются. Такие задачи решаются методами теории пластичности. Решение многих задач методами математической теории пластичности из-за сложностей чисто математического характера практически получить невозможно. Поэтому, наряду с развитием математической теории пластичности, занимающейся изысканием методов точного решения задач механики твердого тела, деформируемого за пределами упругости, разрабатываются упрощенные методы. Такие методы решения задач с помощью введения дополнительных гипотез и допущений излагаются в прикладной теории пластичности. Основные законы и уравнения математической и прикладной теории пластичности изложены в трудах Н. И. Безухова, А. А. Ильюшина, С. Г. Михлина, А. Надаи, Г. А. Смирнова-Аляева, В. В. Соколовского, Р. Хилла, В. Прагера, Н. Н. Малинина, Д. Д. Ивлева, Л. С. Лейбензона и др.  [c.11]

Основной прием метода осреднения состоит в том, что правые части сложных систем дифференциальных уравненией, описывающих процесс колебаний или вращения, заменяются сглаженными , осредненными функциями, не содержащими явно время i и быстро изменяющихся параметров изучаемой системы. Этот метод издавна применялся в небесной механике, с ним связаны известные схемы осреднения Гаусса, Делоне — Хилла и др. В Лекциях Ю. А. Митропольского (1966) в качестве характерного примера применения осреднения в задачах небесной механики рассматривается ограниченная плоская круговая задача трех тел (см. также Н. Д. Моисеев, 1945). Эта задача приводит к уравнениям вида ( 2/- / (II  [c.116]

Лунная теория Брауна. Важная характерная особенность метода Хилла, предопределяющая возможность дальнейшего совершенствования и уточнения решеппя основной задачи, заключается в том, что, как только получены главные части движения перигея и узла, можно определить из системы линейных уравнений коэффициенты членов любого порядка относительно е, е, у и а/а в любой комбинации, если найдены члены более низкого порядка. На каждом этапе все степени параметра m включаются в численные значения этих коэффициентов, тогда как е, е, y /et остаются в алгебраическом виде. Для этой цели можно использовать уравненпя (49) или эквивалентные им уравнения (48). Для получения членов более нпзких порядков выгодны уравнения (50). Это требует разложения хм/г и xs/r по степеням Su и fis, если и = Uq + ou, s = So + fis-  [c.322]


Такая постановка ограниченной задачи трех тел становится основной сначала в теории движения Луны, разработанной Делоне, а затем под ее очевидным влиянием в работах последней четверти 19 века. С одной стороны, Хилл развил к этому времени свою теорию движения Луны, опирающуюся на уравнения (З4). Разработанная детально Брауном, эта теория является в настоящее время наиболее точной, рассматривавшейся когда-либо в небесной механике (как в теоретическом смысле, так и с точки зрения численных расчетов). С другой стороны, оказалось, что схема ограниченной задачи трех тел также дает приемлемое приближение во многих случаях движения малых планет.  [c.427]


Смотреть страницы где упоминается термин Основные уравнения задачи Хилла : [c.272]    [c.273]    [c.275]    [c.277]    [c.279]    [c.404]    [c.27]   
Смотреть главы в:

Небесная механика Аналитические и качественные методыИзд.2  -> Основные уравнения задачи Хилла



ПОИСК



Задача Хилла

Задача основная

Основные задачи

Основные уравнения задачи

Уравнение Хилла

Уравнение основное

Уравнения основные

Хилла



© 2025 Mash-xxl.info Реклама на сайте