Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Проблема полноты в многозначной логике

Проблема полноты в многозначной логике  [c.132]

При разработке любой логической схемы первоочередной задачей является выбор логических элементов, которые следует использовать. Так, например, может быть использован ряд канонических двоичных множеств логических элементов. Чтобы сделать наше обсуждение условий вхождения логического элемента в каноническую систему более живым, в разд. 4.2 дано краткое описание проблемы полноты двоичной логики. Этот вопрос, обобщенный до представлений о полноте многозначной логики, является решающим при определении, когда группа оптических явлений может рассматриваться как часть канонического множества оптических логических элементов. В разд. 4.3 описан специфический пример многозначной логической системы, обладающей слабой полнотой,— системы счисления в остаточных классах (ССОК). Еще совсем недавно алгебра ССОК рассматривалась применительно к арифметическим вычислениям в остаточных классах. По вопросу оптической реализации различных операций в ССОК имеется большое число публикаций, обзор которых сделан в разд. 4.4. Оптические элементы могут образовывать стандартные блоки оптической многозначной логической схемы. В заключительном, в значительной мере техническом разделе описаны некоторые из необходимых тестов, служащих для установления принадлежности многозначной логической функции каноническому множеству. В этом случае такие многозначные логические функции и их оптическая реализация могли бы послужить новыми элементами оптических многозначных логических схем.  [c.114]



Смотреть главы в:

Оптические вычисления  -> Проблема полноты в многозначной логике



ПОИСК



А < рл логики

Многозначность

Проблема п-тел



© 2025 Mash-xxl.info Реклама на сайте