Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Общее решение с использованием численных методов

Общее решение с использованием численных методов  [c.66]

Определение КИН на основе аналитических решений ограничено случаями тел с простой геометрической формой, находящихся под воздействием однородного поля напряжений [16, 253]. Для реальных конструкций, содержащих трещины, получение аналитических решений связано со значительными математическими трудностями. Поэтому для расчета КИН становится необходимым использование численных методов. В настоящее время одним из самых общих методов, обладающих наименьшими ограничениями, является МКЭ [34, 55, 154, 205, 217]. Поэтому в основном все численные методы определения КИН основываются на МКЭ.  [c.194]


Осесимметричные каналы являются составной частью конструкций многих машин, аппаратов, сооружений. Прямой гидродинамической задачей является определение скоростей и давлений потенциального потока в канале, форма которого задана. Эта задача в общем случае может быть решена только приближенно с использованием численных или графоаналитических методов. Обратная задача, которую мы рассмотрим в этом параграфе, состоит в определении формы поверхности канала и некоторых гидродинамических параметров по заданному распределению вдоль оси одного из них. Такая задача представляет практический интерес, так как позволяет найти форму канала, которая обеспечивает формирование потока с заданными гидродинамическими параметрами. Ниже изложен общий метод решения задачи о построении формы канала по заданному закону изменения скорости на его оси [91.  [c.304]

Аналитическое решение системы дифференциальных уравнений, описывающих пожар, может быть получено лишь для некоторых частных случаев [7]. В общем случае система решается численными методами с использованием ЭВМ. В работе [6] приводится пример расчета для помещения кубической формы с геометрическим я параметрами 2й=10 м, У=1000 м р1=р2=р0=4 м , У1=0, У2=2Ь. в данной модельной задаче предполагались известными  [c.398]

Методы математической физики, в частности методы интегральных преобразований, позволяют эффективно решать сравнительно узкий круг задач теории переноса. При рассмотрении систем дифференциальных уравнений с весьма общими краевыми условиями точные методы решения наталкиваются на большие трудности, которые становятся непреодолимыми при рассмотрении нелинейных задач. В этих случаях приходится обращаться к тем или иным численным методам решения. Важно отметить, что использование численных методов зачастую позволяет отказаться от упрощенной трактовки математической модели процесса. В настоящее время практически наиболее ценным методом приближенного решения уравнений теплопроводности является метод конечных разностей, или, как его еще называют, метод сеток.  [c.59]

В настоящее время разработаны и успешно применяются численные методы-решения многих теплофизических задач расчет температурного состояния-твердых тел, температурных полей в потоках жидкости и газа, в жидких и газовых прослойках, заключенных в неподвижные или вращающиеся полости исследование закономерностей движения теплоносителя с целью выявления механизма процессов теплообмена исследование структуры пограничного слоя, теплообмена и трения на твердой поверхности и т. п. Одним из наиболее успешно развивающихся направлений использования математического эксперимента в теплофизических исследованиях является изучение закономерностей тепломассообмена и трения в потоках жидкости и газа с использованием теории пограничного слоя. Поэтому в качестве примера рассмотрим более подробно основные этапы математического эксперимента по исследованию сопротивления трения и теплоотдачи турбулентного потока к твердой поверхности. Ограничим задачу случаем стационарного течения несжимаемой жидкости с постоянными теплофизическими свойствами около гладкой плоской поверхности (в общем случае проницаемой).  [c.66]


Численные методы решения, изложенные во второй главе, позволяют сравнительно просто определить нестационарное температурное поле, удельный тепловой поток в геометрически сложных элементах конструкции без ограничивающих задачу упрощений. Однако такие недостатки, как невозможность общего анализа полученного решения, большая вычислительная работа, в ряде случаев затрудняют использование этих методов в инженерной практике, особенно при проектировании тепловых машин и двигателей. Аналитические методы в отличие от численных позволяют производить общий анализ полученного интеграла, получить удобные и простые для инженерных расчетов решения. Поэтому наряду с численными следует широко применять и аналитические методы решения. Среди аналитических методов решения уравнения теплопроводности наибольшее распространение получили метод разделения переменных и операционный метод.  [c.110]

До последнего времени для решения уравнений теплопроводности и диффузии обычно использовались метод разделения переменных, метод мгновенных источников, методы, основанные на применении функций Грина, Дирака и др. Эти классические методы предполагают отыскание в первую очередь общего решения и его последующее приспособление к частным условиям конкретной задачи. Детальное освещение классических методов решения уравнений переноса можно найти в фундаментальной работе А. Н. Тихонова и А. А. Самарского (Л. 7]. Получаемые классическими методами решения, однако, не всегда оказываются удобными для практического использования. Так, иногда требуется получить приближенные соотношения, в которых режимные параметры процесса должны быть отделены от физических характеристик тела или системы тел, взаимодействующих с окружающей средой. Эти важные для практики соотношения бывает затруднительно получить из классических решений. Еще большие осложнения возникают при решении систем дифференциальных уравнений тепло- и массопереноса классическими методами. Под влиянием запросов техники за последние десятилетия инженерами и физиками стали широко применяться операционные методы решения. Основные правила и теоремы операционного исчисления получены киевским профессором М. Ващенко-Захарченко [Л. 8]. Наибольшее распространение они нашли в электротехнике благодаря работам Хевисайда. Этот метод оказался настолько эффективным, ЧТО позволил решить многие проблемы, считавшиеся до его появления почти неразрешимыми, и получить решения некоторых уже рассмотренных задач в форме, значительно более приспособленной для численных расчетов.  [c.79]

Математические методы и средства вычислительной техники являются важнейшими элементами современной методологии научных исследований, автоматизированного проектирования, инженерных расчетов. Современный уровень развития ЭВМ и сопровождающего их математического обеспечения позволяет инже-неру-теплоэнергетику организовать решение сложнейших задач и обработку больших объемов информации с использованием высокоэффективных численных методов и методов управления базами данных, не требуя от пользователя специальной математической или программистской подготовки. Тем не менее основные сведения об ЭВМ, их техническом и математическом обеспечении, об основных принципах и языках программирования, об общих и ориентированных на теплотехнику и теплоэнергетику пакетах прикладных программ и банках данных специалисту-теплоэнергетику крайне необходимы. Они включены в разд. 5 Вычислительная техника для инженерных расчетов . Здесь приведены характеристики новых ЭВМ, микропроцессоров и микропроцессорных систем, даны сведения о перспективных языках программирования (Ассемблер для микропроцессорных систем, Паскаль), об операционных системах ЕС ЭВМ и СМ ЭВМ. Рассмотрены некоторые типы теплотехнических задач и  [c.8]

В общем случае (1.11) — линейное дифференциальное уравнение второго порядка с переменными коэффициентами. С учетом граничных условий для функции и (г) на контурах г = Ь и г а оно легко может быть решено численным методом при использовании ЭВМ. Для диска постоянной толщины при постоянных параметрах упругости и в некоторых других случаях это уравнение имеет замкнутое решение. Дифференциальные уравнения растяжения диска в напряжениях представляют собой систему двух уравнений относительно и — уравнения совместности деформаций (1.10) и уравнения равновесия (1.3).  [c.10]

Все численные методы решения задач разработки и конструирования лазеров или отдельных их элементов с использованием ЭВМ имеют один общий недостаток. Они дают одно фиксированное решение, если алгоритм решения задачи и программа его реализации на ЭВМ правильны. В идеальном случае задача конструирования и разработка лазера, как и любого прибора, должна решаться как оптимизационная задача, в которой необходимый результат можно получать изменяя исходные параметры в определенных пределах, заданных теоретическими, конструктивными или технологическими возможностями элементной базы лазеров. Прежде чем говорить об оптимизации расчетных задач квантовой электроники с использованием ЭВМ, коротко остановимся на обш,ей классификации задач оптимизации, применяемой в численных методах. Оптимизацию задач, при решении их численными методами на ЭВМ, классифицируют по нескольким основным признакам. Набор этих признаков определяет применимость тех или иных методов, алгоритмов и программ. Если задача поставлена так, что искомый результат представляет собой одно число или группу чисел, то говорят о задаче параметрической оптимизации. Если ищется одна или несколько функций — о задаче оптимального управления.  [c.121]


Одними из первых исследований, в которых были поставлены и решены задачи определения коэффициентов интенсивности напряжений для движущихся трещин в пластинах, были [53, 56]. В первой работе рассмотрена задача о появлении (в начальный момент г = 0) и распространении в обе стороны (начиная с нулевой длины) трещины с постоянной скоростью под действием равномерного растягивающего напряжения. Во второй — решена задача о полу бесконечном разрезе, внезапно появляющемся при t = О в поле растягивающего напряжения и распространяющемся с постоянной скоростью. Естественно, что решения обеих задач являются тарировочными при оценке пригодности численных методов исследования распространяющихся трещин. При этом сравнение аналитических и численных результатов в основном проводится для начальных моментов времени (до прихода в вершину трещины волн, отраженных от границы или от противоположной вершины), поскольку аналитические результаты получены для бесконечных тел. Заметим, что оба решения являются частными случаями общего решения задачи о распространении трещины с произвольной скоростью под действием произвольных нагрузок [16]. Однако в случае распространяющихся трещин конечной длины решение весьма громоздко, что затрудняет его использование в практических целях (для такого класса задач представляют интерес методы, может быть, менее универсальные, но дающие более обозримые результаты).  [c.45]

Параграф 5.1 посвящен развитию метода однородных решений в контактных задачах для тел конечных размеров сложной неканонической формы. Дается общая постановка задач, приводится описание схемы метода. Показывается, что метод однородных решений может быть с успехом применен к широкому классу существенно смешанных задач для тел, часть границы которых совпадает с парой координатных поверхностей канонической системы координат, на которой задаются смешанные граничные условия, а другая часть границы задается достаточно произвольно, и на ней ставятся несмешанные граничные условия. Дается сравнительная характеристика эффективности и границ применимости различных численных методов для удовлетворения краевым условиям при помощи однородных решений, отмечаются трудности, возникающие при использовании методов коллокации и наименьших квадратов, показываются преимущества использования методов Ремеза первого и второго рода.  [c.18]

Наименее организованным приемом численного решения задач об оптимальном управлении, связанным с использованием принципа максимума или аналогичных классических критериев оптимальности, является метод подбора даже слепого) начальных значений вектора ij) (io)) или, соответственно, начальных значений множителей Лагранжа ( о)> путем проб. Обладая большой общностью, метод не выдерживает критики с эстетических позиций и трудно исполним в тех случаях, когда речь идет о системах достаточного высокого порядка. Однако сбрасывать этот метод со счетов нельзя, потому что, будучи дополненным вспомогательными соображениями и в том числе промежуточными оценками результатов, он оказывается достаточно эффективным, если в процессе счета удается уловить характер зависимости оптимального движения (t) от краевых значений вектора "ф (io) или от Kt (to) (здесь речь идет прежде всего о задаче с заданными краевыми условиями на о (io) и х (ii) в случае ослабления этих условий общая проблема оптимальности часто упрощается).  [c.199]

В общем виде конечное соотношение сил и моментов весьма сложно и позволяет получать решения лишь с использованием методов численного интегрирования. Лишь в некоторых частных случаях деформирования конечное соотношение сил и моментов имеет сравнительно простой вид. Например, для случая, когда  [c.31]

Решение этого уравнения в общем случае представляет известные трудности. Его обычно решают численными методами с использованием ЭВМ.  [c.175]

Уравнения пограничного слоя существенно проще общей систе-мы уравнений. Однако, их аналитическое решение, даже для простейшего случая обтекания плоской стенки при Рг=1, весьма трудоемко. В более сложных случаях дифференциальные уравнения (15.15). .. (15.19) решаются численными методами с использованием ЭВМ. С методами решения дифференциальных уравнений можно познакомиться по следующим источникам [1, 18, 21, 22, 30.  [c.281]

Выбирая совершенно произвольно значения коэффициентов А, В, к, мы можем с той или иной степенью приближения аппроксимировать изменение модуля упругости Е. По известному одному из частных решений ф однородного уравнения находим общее решение того же неоднородного уравнения (176) по формуле (164). Мы остановились на некоторых возможностях получения решений дифференциальных уравнений для расчета дисков турбомашин на основании изложенного выше полуобратного метода. При доведении задачи до числа можно пользоваться различными численными методами, например методом сеток с использованием быстродействующих счетных машин. Так как выведенные дифференциальные уравнения для расчета дисков турбомашин, как правило, не решаются в элементарных и известных специальных функциях, то Для получения обозримых результатов расчета можно использовать приближенный, так называемый асимптотический метод  [c.212]

Вместе с тем использование интегральных соотношений между напряжениями и скоростями деформации, записанных в матричной форме, позволяет решить другую проблему — линеаризовать краевую задачу. Действительно, в общем случае ядра R i, т) и Ro t т)— функции инвариантов тензоров (девиаторов) напряжений, скоростей деформаций, температуры, степени деформации. Однако, организовав итерационный процесс при численном решении краевой задачи на ЭВМ, можно в каждой очередной итерации считать, что эти величины определены предыдущим приближением. В этом случае определяющие уравнения становятся линейными. Применяя проекционно-сеточные методы решения краевых задач, в конечном счете приходим к линейной системе алгебраических уравнений для определения искомых параметров.  [c.259]

В рассматриваемом примере к использованию численных методов приходится прибегать при определении Хдом и расчете /р. Определение ном является частным случаем более общей задачи нахождения установившегося режима работы ЭМУ, один из алгоритмов решения которой будет рассмотрен в 6.4. При расчете Гр можно воспользоваться алгоритмом численного интегрирования по правилу трапеции, в соответствии с которым время разгона определяется как  [c.58]

Наконец, четвертый, самый корректный подход — это попытка строгого решения задачи о возбуждении кристаллического полупространства системы металлических электродов. Здесь следует отметить два приема — использование функций Грина [67, 155, 156] и построение точного решения электрической задачи с дальнейшим использованием для решения введенного Ипгебригтсеном [157] понятия поверхностного импеданса [158, 159]. В обоих случаях довольно длительная и слол<ная процедура решения приводит к интегральному или инте родифферен-циальному уравнению, решение которого в общем случае возможно только численными методами. Для ряда частных случаев, например для узких (по сравнению с длиной волны) электродов, решение может быть получено в аналитической форме.  [c.177]

Решение задачи динамики полета ракет представляет значительные расчетные трудности, связанные с необходимостью использования в уравнениях движения ракет эмпирических членов, количественно определяемых при испытаниях ракетных двигателей (а также по результатам опытов в натурных условиях) и задаваемых графиками или таблицами. В связи с этим уравнения динамики полета ракет приходится интегрировать численными методами с широким привлечением для этой цели электронных вычислительных машин (ЭВМ). Обработка результатов такого рода вычислен1п 1 позволяет установить некоторые общие закономерности, использование которых при проектировании ракет оказывается существенным.  [c.123]


Следует подчеркнуть, что использование численного интегрирования в данном случае не имеет ничего общего с применением этого способа для получения решения при установившемся режиме. В первом случае речь идет об аналитическом методе, в котором численным интегрированием определены лишь отдельные промежуточные функции, вычисленные на ограниченном отрезке времени во втором — об интегрировании до выхода на установившийся режим, что нередко связано с большим объемом вычислений (а следовательно, и машинного времени) и большой накопленной погрешностью. С устранением этих недостатков связана эффективность многих аналитико-вычислительных методов, используемых в современных задачах динамики машин [5, 12, 13,61].  [c.95]

Рассмотрим в качестве примера панель, схема которой изображена на рис. 1.7, в предположении, что жесткость на растяжение-сжатие EjFj каждого /-го ребра изменяется по длине панели произвольным образом. Как отмечалось в разд. 1.3, расчет такой панели сводится к решению системы линейных дифференциальных уравнений с переменными коэффициентами. Точно решить такую систему в общем виде нельзя. Поэтому ниже дадим численный метод решения, основанный на замене системы дифференциальных уравнений системой уравнений в конечных разностях. Решение этой последней системы можно без труда получить, ориентируясь на численный расчет с использованием вычислительной машины. Основная функция машины заключается при этом в перемножении известных матриц, что мож1но сделать с помошью стандартной программы.  [c.57]

Гессоу и Крим [G.62] вывели уравнения махового движения на переходном режиме и предложили метод численного решения этих уравнений. Авторы рассматривали шарнирный винт с относом ГШ, а также винт с качающейся втулкой. Аэродинамические характеристики сечений были заданы в общем виде l = i a, М) и d = d(a, М), а углы взмаха, притекания и установки не считались малыми. Уравнение махового движения выведено из условия равновесия моментов аэродинамических, инерционных, центробежных сил и веса. Численное решение было получено методом Рунге—Кутта с использованием ЦВМ. Работа [G.62] проводилась с целью исследования динамической устойчивости махового движения (при возмущении движения на переходном режиме) и аэродинамических характеристик несущего винта (при возмущении установившегося периодического решения). Численное решение позволяет исследовать аэродинамические характеристики сечений в общем виде с учетом влияния срыва, сжимаемости и зоны обратного обтекания (если имеются соответствующие характеристики сечений).  [c.260]

Модель (5.21) численно реализована с помощью варианта метода планирования многофакторных экспериментов, предложенного в [9]. Общая схема использованного алгорит.ма решения задачи (5.2) следующая.  [c.228]

Для численного решения практических задач, связанных с теплопе-реносом, течением жидкости и другими аналогичными явлениями, требуется, как правило, интегрирование системы нелинейных дифференциальных уравнений в частных производных по пространственным координатам и времени. Хотя существуют численные методы для получения такого решения, задача написания и использования общих вычислительных программ для всех практически важных процессов тепломассопереуноса достаточно трудна. Подобная задача может оказаться просто пугающей, особенно для начинающего. Более приемлемое начало исследований в сфере численного моделирования может быть обеспечено с помощью уже готовой к использованию вычислительной программы, ограниченной подмножеством решаемых задач теплопереноса и течения жидкости. Автор стремится показать  [c.19]

Элементарные процессы (блок I). В активной среде ГЛЭВ к ним относятся процессы, определяющие заселенности энергетических уровней атомами или молекулами при возбуждении их электрическим разрядом. Основной характеристикой разряда в этих процессах является функция распределения электронов fe ( — энергия электрона). Определить fe (е) можно из кинетического уравнения Больцмана, которое в общем виде является нестационарным интегро-дифференциальным уравнением [ 128 ], не имеющим аналитического решения в общем виде. Однако в теории кинетических процессов хорошо изучены те упрощения, которые позволяют решать уравнение Больцмана численными методами с использованием ЭВМ, а в отдельных случаях получать и аналитические решения [28]. Для атомарных и молекулярных  [c.60]

Между искомым оптимумом и свободными параметрами есть неявная функциональная зависимость X = X (7), которая может быть использована в той же роли, что и зависимость решений уравнений от параметра. Важной особенностью любой оптимизационной задачи, во многом определяюш.ей подход к ее численному решению, является единственность экстремума. Вопрос о единственности экстремума часто прошве решить на основе физических соображений, чем с помощью средств формального математического исследования. Решение многоэкстремальной задачи является более трудоемким. В немалой степени успех параметрической оптимизации зависит от удачно заданных начальных приближений и использования каких-либо благоприятных свойств функционала, например, симметрии компонент X. Заканчивая эту краткую характеристику задач параметрической оптимизации можно отметить, что наилучшим образом изучены и поддаются решению с помощью общих методов задачи линейного программирования. Поэтому иногда есть смысл воспользоваться грубой линейной моделью для получения хотя бы качественного представления о районе расположения оптимума или для задания такого линеаризированного решения в качестве начального приближения при решении общей нелинейной задачи.  [c.122]

Конечно-амплитудные движения. С ростом числа Грасгофа в замкнутых полостях происходят последовательные перестройки движения с усложнением пространственно-временной структуры. Расчеты развитых конвективных движений требуют применения численных методов. Наиболее употребительными являются методы сеток и Галеркина — Канторовича. При использовании метода Галеркина — Канторовича исходная система уравнений в частных производных заменяется системой обыкновенных дифференциальных уравнений, иногда сравнительно невысокого порядка, моделирующей наиболее существенные свойства исходной системы. Данный подход развит для решения нелинейных задач гидродинамики в работах А.М. Обухова с сотрудниками, построивших общую теорию нелинейных систем гидродинамического типа [108, 109]. В области применимости маломодовых моделей использование аппарата качественной теории дифференциальных уравнений позволяет получить обширную информацию о типах движений, их устойчивости и взаимных переходах. Следует подчеркнуть, однако, что маломодовые модели могут оказаться недостаточными для описания реальных явлений (см. [63, 64]).  [c.282]

Применение функционала Лагранжа для решения численными методами краевых задач теории композитных оболочек при изменении их параметров в широких пределах [1, 2] приводит к эффектам сдвигового и мембранного вырождения. Такие явления получили название запирание . Они проявляются в замедленной сходимости численных методов, вследствие чего достоверность получаемых решений тяжело оценить. Способы преодоления таких нежелательных эффектов являются актуальными и к настоящему времени, в особенности по отношению к композитным оболочкам, поскольку увеличивается количество параметров, которые могут привести к таким эффектам. Для их преодоления были предложены проблемно-ориентированные смешанные функционалы [3, 4] и сформулированы варианты теорий нелинейно-упругих ортотропных тонких и нетонких оболочек в зависимости от соотношений между параметрами их композитных материалов (КМ). С их использованием был решен ряд тестовых [5] и новых [6, 7] задач статики оболочек из нелинейно-упругих КМ. Ниже дана общая характеристика предложенных функционалов и вариантов теории, а также приведены наиболее яркие демонстрационные примеры расчетов.  [c.531]

О некоторых методах моделирования турбулентности. Помимо статистического подхода к моделированию турбулентности в настоящее время все более широкое применение находит феноменологический (полуэмпириче-ский) подход и методы прямого численного моделирования турбулентности на основе решения специальных кинетических уравнений или нестационарной системы трехмерных уравнений Навье-Стокса, хотя в силу стохастичности данного явления в реальности удается получать лишь осредненные характеристики движения. Это позволяет, тем не менее, иногда проследить не только эволюцию образований различных пространственных структур с течением времени, но также изучать общую динамику и природу развития турбулентности. Например, результаты численного моделирования явления перебросов в гидродинамической системе (сконструированной в виде многоярусной модели зацепления простейших элементов - триплетов) иллюстрируют каскадный процесс передачи энергии в развитом турбулентном потоке, соответствующий известному закону Колмогорова-Обухова Гледзер и др., 1961) и подкрепляют представления об общих свойствах в поведении динамических систем. Интересно также отметить, что исследование процесса стохастизации динамических систем и сценариев перехода к хаосу при численном моделировании турбулентности служит аналогом решения некорректных задач с использованием оператора осреднения и параметрического расширения Тихонов и Арсенин, 1986). При таком подходе упорядоченная структура турбулентного течения, которая определяется как аттрактор асимптотически устойчивого решения для осредненных величин, представляет собой его регуляризованное описание Белоцерковский, 1997). Следует однако заметить, что использование методов прямого численного моделирования турбулентности для решения практически важных задач (особенно задач, связанных с расчетами турбулентного тепло-и массопереноса в многокомпонентных химически активных смесях) часто затруднительно или является слишком громоздким. Поэтому подобные задачи целесообразнее решать с помощью более простых, полуэмпирических теорий.  [c.16]


В пятидесятых годах решение прямой задачи начинает внедряться в практику расчета и проектирования турбомашин и получает многочисленные примеры применения. Решение задачи относительно составляющих скоростей производится обычно по методу прямых и сводится к последовательности краевых задач для системы обыкновенных дифференциальных уравнений в естественной сетке с использованием кривизн (Г. Ю. Степанов, 1953, 1962) или в нолуфиксированной и в фиксированной сетках (Л. А. Симонов, 1950, 1957 Я. А. Сироткин, 1959—1963 Н. И. Дураков и О. И. Новикова, 1963 М. И. Жуковский, 1967). Решение задачи относительно функции тока получается методом сеток (Г. И. Майкапар, 1958 Я. А. Сироткин, 1964) или вариационным методом Галеркина (П. А. Романенко, 1959). Во всех случаях из-за нелинейности задачи применяются последовательные приближения, причем их сходимость проверяется или достигается (путем выбора шагов сетки или весовых коэффициентов) с помощью численного эксперимента. Расчеты в общей постановке задачи оказываются весьма трудоемкими и ориентируются в основном на применение современных ЭЦВМ.  [c.148]

Условия автомодельности решений уравнений плоского стационарного пограничного слоя выполняются лишь в единичных случаях, большинство которых в предыдущих двух параграфах уже изложено. На практике приходится иметь дело, конечно, с более общими, неавтомодельными движениями, требующими использования уравнений в частных производных. В этих случаях можно указать три реальных пути решения задач 1) аналитические методы и, главным образом, разложения в ряды 2) численные расчеты на ЭВЦМ и 3) применение приближенных методов. Первый путь достаточно громоздок и все реже и реже используется в практических расчетах. Что касается второго пути, то, как уже ранее упоминалось, и настоящее время в вычислительных центрах нашей страны уже разработаны стандартные программы числового решения конкретных задач пограничного слоя на большинстве применяемых у нас машин. Это отнюдь не должно явиться препятствием к развитию эффективных приближенных методов решения задач теории пограничного слоя. Современное состояние развития этого третьего пути будет изложено в следующих двух параграфах.  [c.610]

Затем в работе А. А. Паскаленко и Г. Я. Попова [56] способ предельного перехода был реализован для общего случая линейно-деформируе- мого основания. Это удалось сделать благодаря использованию способа преобразования формул метода факторизации, о которой шла речь выше (1, 3, 6). В этой же работе впервые получено точное решение (и данг численная, реализация) задачи об изгибе полубесконечной балки на основании типа упругого полупространства с Е=Еуг". Задачу о контакте полубесконечной балки можно, разумеется, решать и не обращаясь к формулам, дающим решение соответствующей пространственной задачи.  [c.302]

Второе издание книги полностью переработано. В нем в отличие от первого издания более подробно изложены общие вопросы теорйи пластичности,, а также рассмотрены теория пластичности с анизо- тропным упрочнением, условие пластичности и теория пластичност для анизотропных материалов, напряженное состояние в шейКе образца при растяжении, новые методы построения действительной диаграммы деформирования, большие деформации и пластическая устойчивость цилиндрических и сферических оболочек, численные методы решения краевых задач плоской деформации и примеры йри-менения их, теория ползучести с анизотропным упрочнением, кратковременная ползучесть, использование критерия Треска—Сен-Венана, в решении задач установившейся ползучести, методы решения задач неустановившейся ползучести и примеры их применения, определение времени разрушения в условиях ползучести, вязкоупругость.  [c.3]

Практический подход к вопросу сходимости дает выборочный тест Айронса [19, 20], который описывается здесь в общих чертах для задач механики твердого тела. В простейшей форме теста группа элементов, или кусок как минимум с одним невнутренним узлом, полностью окруженным элементами, нагружается на границе силами, соответствующими постоянным деформациям на всем куске. Если метод сходится, то по выборочному тесту вычисленные методом конечных элементов перемещения, деформации и напряжения должны согласовываться с приложенной постоянной деформацией. Тестом может служить также использование приложенных перемещений, соответствующих состоянию постоянной деформации на всем куске. Применимы также выборочные тесты более высокого порядка, требующие на всем куске согласования решения с более -сложными нагрузками, предписанными на границе. Выборочный тест не ограничивается полными -или согласованными элементами, а может также применяться для определения того, дают ли сходящееся решение элементы, не удовлетворяющие этим крите риям. Тест, разработанный на основании инженерной интуиции был обоснован математически Стренгом [21] как необходимый достаточный признак сходимости в следующих случаях а) ког да используются несогласованные элементы б) когда в фор мулы входит численное интегрирование. Как недавно указа/ Оливейра [22], этот признак можно распространить иа задачи отличные от задач механики твердого тела.  [c.177]

Решение этого уравнения и нахождение Qi(t3,t,m) и ai tz,t,m) сводится к многократному вычислению интегралов типа свертки. Поэтому не представляет никаких принципиальных трудностей вычислить эти функции и производные от них характеристики с помощью методов численного интегрирования, позволяющих оценить характеристики надежности при любых законах распределеня F t) и в том числе и таких, для которых аналитическое решение получить очень трудно или вообще невозможно. Однако представляется целесообразным вести поиск и аналитических решений, так как они облегчают анализ общих свойств временного резервирования и не требуют использования не всегда доступных средств вычислительной техники.  [c.165]

В настоящее время большое внимание уделяется созданию адекватных моделей нелинейных процессов деформирования, связанных с большими деформациями, неупругим поведением материала и нелинейными динамическими волновыми явлениями в слоистых и композиционных материалах. Построение общих сложных моделей, как правило, сочетается с необходимостью разработки достаточно простых, но в то же время эффективных моделей описания процессов с требуемой точностью, выделением главных или ведущих параметров рассматриваемых процессов деформирования и созданием экономичных программ их численной реализации. При решении задач механики сплошных сред и деформирования элементов конструкций достаточно универсальными и широко распространенными являются метод конечных элементов (МКЭ), метод граничных элементов (МГЭ), вариационно-разностные методы (ВРМ), метод конечных разностей (МКР) в различных вариантах и сочетаниях с другими методами. В основу этих методов положено дискретное представление функций непрерывного аргумента и областей их определения, ориентированное на использование современных ЭВМ с дискретным способом обработки информацш, включая вычислительную технику новой архитектуры с векторными и параллельными процессорами. В механике, в частности в строительной, дискретное представление тел или конструкций в виде набора простых элементов имеет глубокие исторические корни, которые в свое время и послужили отправной точкой развития и обобщений МКЭ.  [c.5]


Смотреть страницы где упоминается термин Общее решение с использованием численных методов : [c.4]    [c.108]    [c.96]    [c.115]    [c.68]    [c.4]    [c.363]    [c.14]    [c.46]    [c.56]    [c.694]   
Смотреть главы в:

Расчет элементов конструкций из упругих неоднородных материалов  -> Общее решение с использованием численных методов



ПОИСК



288 — Использование 168 — Методы

Me численные (см. Численные методы)

Методы численные

Методы численные (см. Численные методы)

Методы • решения численные

Общий метод

Общий метод решения

Решения метод

Численные решения



© 2025 Mash-xxl.info Реклама на сайте