Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение по закону тяготении Ньютона

Пусть имеется п материальных точек с массами т, ..гпп, взаимодействующих друг с другом по закону тяготения Ньютона. Система уравнений движения для задачи п тел имеет вид  [c.266]

Одна из основных задач небесной механики, в которой рассматриваются три свободные материальные точки, взаимодействующие по закону тяготения Ньютона, носит название задача трех тел ). Система, состоящая из трех свободных материальных точек, представляет собой замкнутую (изолированную) систему, поскольку внешние силы не принимаются во внимание. Аналитическое исследование движения каждой точки в задаче трех тел, несмотря на очень простую структуру самой системы, связано с огромными математическими трудностями и общее решение в приемлемом виде еще не найдено ). Со времен Эйлера, Лагранжа, Лапласа и до наших дней задача трех тел привлекает внимание многих исследователей, среди которых немало крупнейших математиков и механиков. Задаче трех тел посвящено много сотен работ и монографий.  [c.160]


Изучая движение материальных тел под действием сил, можно выделить весьма важный класс задач динамики, характерных тем, что некоторые из действующих на объект сил могут быть запрограммированы и реализованы в процессе движения человеком-пилотом (или автопилотом). Часть сил, приложенных к движущемуся объекту, конечно, определена (детерминирована) природой, а часть может изменяться в широких пределах по некоторым законам, заложенным в конструкции летательного аппарата. Так, при изучении движения ракеты в поле тяготения Земли гравитационная сила вполне детерминирована (она в первом приближении подчиняется закону тяготения Ньютона), а реактивная сила может изменяться и регулироваться как по величине, так и по направлению. Каждому закону регулирования реактивной силы будет соответствовать некоторый закон движения ракеты. В современной ракетодинамике и динамике самолета такие задачи часто называют задачами с управляющими (или свободными) функциями. Если управляющие функции все заданы и, следовательно, сделаны определенными все действующие силы, то мы будем иметь дело с обычной задачей теоретической механики найти закон движения объекта, если действующие на него силы известны. Но выбор (задание) свободных функций можно подчинить некоторым достаточно общим и широким условиям оптимальности (экстремаль-  [c.34]

Тесно связаны проблема инерционности и проблема гравитации, становящаяся всё более злободневной по мере её осознания. Предложение Э. Маха [64] по расширению аксиоматики Ньютона за счёт бесконечно удалённых масс учитывается при исследовании инерционности механического движения в форме принципа, названного принципом изменения нарушения симметрии (заметка 36) (аналог известного спонтанного нарушения симметрии при наблюдениях массы элементарных частиц). Нарушение симметрии — исходная посылка появления так называемого гравитационного парадокса [75]. Обсуждается задача вычисления энергоресурса бесконечно удалённых масс, из которых при наличии закона тяготения Ньютона в мысленных экспериментах формируется тело конечных размеров (шар) (заметка 37). Составлен кинетический потенциал системы релятивистская частица — собственное поле, обладающее инерционными свойствами (заметка 38).  [c.15]

Изучая движение материальных тел под действием сил, можно выделить весьма важный класс задач динамики, характерных тем, что некоторые из действующих на объект сил могут быть запрограммированы и реализованы в процессе движения человеком-пилотом (или автопилотом). Часть сил, приложенных к движущемуся объекту, конечно, определена (детерминирована) природой, а часть может изменяться в широких пределах по некоторым законам, заложенным в конструкцию летательного аппарата. Так, при изучении движения ракеты в поле тяготения Земли гравитационная сила вполне детерминирована (она, в первом приближении, подчиняется закону тяготения Ньютона), а реактивная сила может изменяться и регулироваться как по величине, так и по направлению. Каждому закону регулирования реактивной силы будет соответствовать некоторый закон движения ракеты. В современной ракетодинамике и динамике самолета такие задачи часто на> зывают задачами с управляющими (или свободными) функциями. Если управляющие функции все заданы и, следовательно, сделаны определенными все действующие силы, тогда мы будем иметь дело с обычной задачей теоретической механики найти закон движения объекта, если действующие на него силы неизвестны. Но выбор (задание) свободных функций можно подчинить некоторым, достаточно общим и широким, условиям оптимальности (экстремальности) и производить определение динамических характеристик для этих классов оптимальных движений. Метод проб или сравнений, лежащий в основе классических вариационных принципов, применим и здесь, но варьируется выбор управляющих функций, а не траекторий в пространстве конфигураций. Задачи такого рода имеют большое практическое значение в динамике полета ракет и самолетов, а также в теории автоматического регулирования-  [c.14]


К закону (9) приводят астрономические наблюдения за движением спутников Юпитера, анализ движения Плутона, проведенный Адамсом и Леверье и приведший к открытию новой планеты Нептун, объяснение приливов в морях и океанах Земли, объяснение формы Земли, наблюдения за двойными звездами и шаровыми скоплениями звезд. Все это утверждает нас в мысли, что закон тяготения Ньютона (9) верен всегда и везде и как всеобщий закон природы по праву должен быть назван законом всемирного тяготения.  [c.91]

Небезынтересно отметить, что Кеплер свои законы установил до Ньютона по результатам наблюдения за движением планет. Закон тяготения был открыт позже. Таким образом, Кеплер искал гармонию в мироздании, а Ньютон — силу, управляющую мирами.  [c.324]

Из законов Кеплера Ньютон нашел закон, по которому изменяется сила, действующая на планету при ее движении вокруг Солнца, а затем пришел к закону всемирного тяготения.  [c.387]

Заметим, наконец, что когда в поле тяготения тела 5 (Солнца) движется одновременно несколько тел Я, (планет), то точное решение задачи требует учета не только сил притяжения между телами и телом S, но и взаимного притяжения тел Pj. Точное решение возникающей отсюда задачи и тел, т. е. задача о движении п материальных точек, взаимно притягивающихся по закону Ньютона, связано с большими математическими трудностями, и его не удалось пока найти с помощью известных в анализе функций даже для случая трех тел.  [c.396]

Формулы Вине дают возможность рассчитывать скорость и действующую силу в зависимости от положения точки на заданной в плоскости V траектории. Их можно использовать, в частности, для вывода закона всемирного тяготения Ньютона из законов, сформулированных И. Кеплером по наблюдениям за движением небесных тел солнечной системы. Приведем законы Кеплера.  [c.255]

Допустим, что в известной точке планета начала свое движение и имеет определенную скорость. Она движется вокруг Солнца по какой-то кривой, и мы попытаемся определить с помощью уравнений движения Ньютона и его же закона всемирного тяготения, что это за кривая. Как это сделать В некоторый момент времени планета находится в каком-то определенном месте, на расстоянии г от Солнца в этом случае известно, что на нее действует сила, направленная по прямой к Солнцу, которая согласно закону тяготения равна определенной постоянной, умноженной на произведение масс планеты и Солнца и деленной на квадрат расстояния между ними. Чтобы рассуждать дальше, нужно выяснить, какое ускорение вызывает эта сила.  [c.307]

Установление закона силы может происходить путем непосредственного обобщения результатов опыта, заключающегося в определении закона силы по наблюдаемому движению. Примером может служить только что приведенный вывод закона всемирного тяготения Ньютона из экспериментально установленных Кеплером кинематических законов движения планет ( 48).  [c.27]

Силы инерции — переносная и кориолисова—для наблюдателя, связанного с неинерциальной системой, представляются вполне реальными они вместе с остальными приложенными силами влияют на изменение движения по отношению к этой неинерциальной системе. Отметим некоторые особые их свойства. Вспоминая перечисленные в 86 законы сил, заметим, что силы инерции, пропорциональные по самому их определению массам движущихся в неинерциальных системах отсчета точек, в некотором роде аналогичны силам тяготения. Как показывается в общей теории относительности, эта аналогия имеет глубокий физический смысл. Второй особенностью сил инерции является видимое отсутствие тех материальных тел, которые, согласно третьему закону Ньютона, могли бы рассматриваться как источники возникновения сил инерции. Это обстоятельство  [c.422]

В частности, апсидальный угол не может равняться тт, если сила изменяется с расстоянием не по закону Ньютона. Из этого следует, как это и было высказано Ньютоном, что если бы истинный закон тяготения отклонялся незначительно от обратной пропорциональности квадрату расстояния, то вследствие этого происходило бы прогрессирующее движение перигелиев всех планет. Например, если бы показатель s в (2) имел значение 2- -Х, где I — малая величина, то апсидальный  [c.233]

Кометы. Дальнейшее экспериментальное доказательство закона тяготения, которое уже во времена Ньютона казалось по справедливости решающим, было получено из наблюдений над движением комет. До Ньютона астрономы не рассматривали движения комет Кеплер, например, принимал их за временные метеоры, порождаемые эфиром. Но Ньютон математическим путем (см. 2) убедился в том, что точка, притягиваемая неподвижным центром с силой, обратно пропорциональной квадрату расстояния, может описывать не только орбиты с небольшим эксцентриситетом (каковыми в первом приближении являются орбиты планет), но также и эллипсы, как угодно вытянутые, или даже дуги парабол или гипербол. Принимая это во внимание, он пытался объяснить движение комет, которые обычно появляются на огромных расстояниях от Солнца, приближаются к нему, а затем удаляются и исчезают.  [c.199]

О задаче трех и более тел. Задача п тел (п 2) состоит в следующем. В пустоте находятся п материальных точек, взаимодействующих по закону всемирного тяготения Ньютона. Заданы начальные положения и скорости точек. Требуется найти положения всех точек как функции времени. Эта задача не решена до сих пор. Более того, показано, что даже в случае трех тел помимо классических интегралов, существование которых следует из общих теорем об изменении количества движения, кинетического момента и кинетической энергии, дифференциальные уравнения движения не имеют других интегралов, которые выражались бы через алгебраические или через однозначные трансцендентные функции координат и скоростей точек.  [c.244]


В этом параграфе осталось сказать несколько слов о задаче трех и более тел. В общей задаче п тел считается, что п материальных точек взаимно притягиваются друг к другу по закону всемирного тяготения Ньютона. Лля заданных начальных положений и скоростей этих точек требуется найти их местоположение как функций времени. Решение этой задачи не найдено до сих пор. Известно, что интегралы движения точек не выражаются в алгебраических или трансцендентных функциях их координат и скоростей.  [c.415]

Здесь 7 — гравитационная постоянная, 21, 31 — силы притяжения тела ГП1 к телам Ш2,шз соответственно Г12, Г13 — расстояния между телом Ш1 и телами Ш2,шз соответственно. Движение тела Ш1 описывается по закону всемирного тяготения Ньютона векторным уравнением  [c.537]

В своих естественнонаучных взглядах Ньютон стоял на метафизической точке зрения. Метафизические взгляды Ньютона выразились прежде всего в том, что при установлении основных законов механики он вводит понятия абсолютного пространства и абсолютного времени , считая их независимые от материи и ее движения. Открыв закон всемирного тяготения, Ньютон не смог дать научного решения вопроса о происхождении солнечной системы для этого ему пришлось прибегнуть к антинаучной гипотезе первоначального толчка , которая по существу содержит в себе антиматериалистическую идею о сотворении движения и потому, по выражению Энгельса, предполагает также и творца (Энгельс, Диалектика природы, 1953, стр. 47).  [c.19]

Законы Кеплера давали вполне ясную картину движения планет и показывали, что мир планет представляет собой стройную систему, управляемую единой силой, связанной с Солнцем. Но установить закон действия силы тяготения к Солнцу Кеплер не мог, так как еще не были известны основные законы механики. Впервые силу, действующую на планеты, определил Ньютон. Первые исследования Ньютона по этому вопросу относятся, по-видимому, к 1666 г., но окончательные результаты были опубликованы в 1687 г. в сочинении Математические начала натуральной философии . Все своп рассуждения Ньютон проводил сложным геометрическим методом. При выводе закона тяготения будем пользоваться формулами Бине.  [c.243]

Из рассмотрения законов Кеплера, силы тяжести на земной поверхности и движения Луны вокруг Земли Ньютон пришел к открытию закона всемирного тяготения, который гласит, что каждые две материальные частицы во вселенной притягивают друг друга с силой, действующей по прямой, их соединяющей, и напряжение которой изменяется пропорционально произведению их масс и обратно пропорционально квадрату их взаимного расстояния.  [c.84]

Движение планет вокруг Солнца представляет собой рассмотренное выше движение тел по эллиптическим орбитам под действием ньютоновой силы притяжения. Законы движения планет были открыты немецким астрономом Кеплером (1571 —1630) до открытия Ньютоном закона всемирного тяготения и подготовили открытие этого закона.  [c.205]

Таким образом, сила тяжести, как и любая другая сила, по Декарту, есть результат движения материи, а не свойство тела. Отождествляя тонкую материю с пространством, можно было бы сказать на современном языке, что тяготение у Декарта становится свойством пространства. У Гильберта и Кеплера сила тяготения была присуща самим телам, у Галилея (а затем и у Ньютона) она тоже не сводится к свойствам пространства и времени. Вместе с тем механицизм Декарта противостоял и атомизму, согласно которому именно атомы создают поля сил, а их скрытые движения объясняют все физические процессы. Важно еще отметить, что термин сила Декарт применяет в значении действия, то есть энергии или работы, широко используя принцип сохранения последней как закон, не нуждающийся в доказательстве. Декартова сила зависит от величины силы в современном ее значении (как меры взаимодействия тел) и от проекции пройденного пути на направление действия силы. Поэтому сила , служащая для подъема груза, имеет оба эти измерения, а сила, служащая для его поддержания, — одно. ...Эти силы, — пишет Декарт,— отличаются друг от друга настолько же, насколько поверхность отличается от линии . В результате он доказывает , что сила , способная поднять груз в 2 кг на  [c.73]

Задача я тел. Мы только что видели, каким путем Ньютон пришел к закону всемирного тяготения. Теперь речь идет о том, чтобы, исходя из этого закона, объяснить движение небесных тел и, в частности, тел, образующих солнечную систему Солнца, планет, их спутников и комет. При изучений относительных движений этих тел можно совершенно пренебречь действием звезд вследствие огромных расстояний до звезд по сравнению с размерами солнечной системы ).  [c.348]

Соединение второго закона Ньютона и закона всемирного тяготения в объединенный закон отнюдь не является искусственным, как это может показаться с первого взгляда. Полученная таким образом формула (1.11) без труда приводится к третьему закону Кеплера, являющемуся опытным законом природы и, заметим кстати, открытому раньше законов Ньютона. Действительно, предполагая, для простоты, что движение планет происходит по окружностям с периодом обращения Г, и заменяя в формуле (1.11) ускорение а (которое в данном случае является центростремительным) его выражением  [c.37]

НЕБЕСНАЯ МЕХАНИКА — раздел астрономии, изучающий движение тел Солнечной системы. Т. к. расстояния между всеми телами Солнечной системы очень велнки но сравнению с размерами самих тел, то их можно рассматривать как материальные точки, притягивающие друг друга по закону тяготения Ньютона. Поправки, вытекающие из теорип относительности, очень малы и в некоторых случаях учитываются дополнительно. Т. о., основная задача Н. м. сводится к т. и. задаче п тел. Строгое математич. решение задачи п тел невозможно, ноэтому при исследовании движения тел Солнечной спстемы рассматривают отдельные специальные задачи.  [c.364]

ТРЁХ ТЕЛ ЗАДАЧА, одна из частных задач небесной механики о движении трёх тел, взаимно притягивающихся по закону тяготения Ньютона. Если притягивающиеся тела рассматривать как материальные точки (что выполняется, напр., в первом приближении для Солнца, Земли и Луны или для Солнца, Юпитера и к.-л. из асхероидов-троянцев), то для ряда случаев могут быть получены простые решения. Так, в движении астероидов-троянцев реализуются т. н. треугольные решения Лагранжа для случая движения тела малой массы (астероида) в поле тяготения двух тел большой массы (Солнца и Юпитера). Астероид-троянец, находясь в т. н, точке либрации, движется по такой орбите, что Солнце, Юпитер и он сам находятся в трёх вершинах равностороннего треугольника. В общем случае устойчивые траектории трёх гравитационно взаимодействующих тел могут быть очень сложными. Существует общее аналитич. решение задачи трёх тел в виде рядов, сходящихся для любого момента времени. Однако из-за медленной сходимости этих рядов вместо аиалитич. метода пользуются численными методами решения Т. т. з. на ЭВМ.  [c.767]

Ньютонова теория Т. и ньютонова механика явились величайшим достижением естествознания. Они позволяют описать с больпюй точностью обширный круг явлений, в т. ч. движение естеств. и искусств, тел в Солнечной системе, движения в др. системах небесных тел в двойных звёздах, в звёздных скоплениях, в галактиках. На основе теории тяготения Ньютона было предсказано существование планеты Нептун и спутника Сириуса и сделаны многие др. предсказания, впоследствии блестяще подтвердившиеся. В совр. астрономии закон тяготения Ньютона является фундаментом, на основе к-рого вычисляются движения и строение небесных тел, их массы, эволюция. Точное определение гравитац. поля Земли позволяет установить распределение масс под её поверхностью (гравиметрич, разведка) и, следовательно, непосредственно репшть важные прикладные задачи. Однако в нек-рых случаях, когда поля Т. становятся достаточно сильными, а скорости движения тел в этих полях не малы по сравнению со ско-ростью света, Т. уже не может быть описано законом Ньютона.  [c.188]


Центральная проблема небесной механики — проблема трех тел — в XVIII в. была уже или предметом, или стимулом многих исследований, без которых нельзя себе представить историю общей механики Это относится к значительной части тех работ, которые рассмотрены в первых пунктах настоящей главы. Связь исследований по общей и небесной механике становится совершенно явной и систематической к середине XVIII в., когда стала общепризнанной безнадежность построения теории орбит (планет и комет) на основе декартовой теории вихрей, и получили достаточные подтверждения расчеты, основанные на законе тяготения Ньютона. Наибольшее значение имели в то время исследования по теории движения Луны как для небесной механики, так и для навигационной практики. Тут надо отметить работы Кле-ро и Эйлера, в частности премированное в 1751 г. Петербургской академией наук исследование Клеро, само название которого программно Теория движения Луны, выведенная единственно из начала притяжения, обратно пропорционального квадратам расстояния . Оценивая это исследование, Эйлер писал в отзыве, составленном но поручению Петербургской академии, что эту диссертацию не только нужно считать достойной высшей награды, но через нее и слава знаменитейшей Академии возрастает не незначительно, так как, предложив вопросы столь трудные, она привела к ясности положения самые скрытые Велико историческое значение и другой работы Клеро, тоже получившей в 1762 г. премию Петербургской академии наук. В ней было рассчитано время прохождения кометы Галлея .  [c.153]

Среди деятелей эпохи Возрождения особенно выделяется гениальный художник, геометр и инженер, итальянец Леонардо да Винчи (1452—1519), которому принадлежат исследования в области теории механизмов, трения в машинах и движения по наклонной плоскости. Кроме того, он занимался перспективой, теорией теней и строил модели летательных машин. Им построен также эллиптический токарный станок, носящий до сих пор его имя. Другой замечательный деятель этой эпохи, великий польский ученый Николай Коперник (1473—1543) создал свою гелиоцентрическую картину мира, которая, сменив геоцентрическую картину Птолемея, произвела большой переворот в научном мировоззрении и оказала огромное влияние на все последующее развитие естествознания. Благодаря работам Коперника и многочисленным наблюдениям датского астронома Тихо-Браге Иоганн Кеплер (1571 —1630) получил свои три знаменитых закона движения планет, послуживших Ньютону основанием для его закона всемирного тяготения ). Далее следует упомянуть о работах голландца Стевина (1548—1620), который исследовал законы равновесия тел на наклонной плоскости и в результате пришел к выводу основных законов статики.  [c.11]

Заметим, что планеты вокруг Солнца движутся также по эллиптическим орбитам, одиако при этом Солнце находится пе в центре эллипса, а в одпом из его фокусов (nepDbiii закон Кеплера), и сила притяжения не пропорциональна удалению, а обратно пропорциональна квадрату его (закон всемирного тяготения Ньютона). При этом уравнения движения планеты значител1лзо сложнее, чем (13.13),  [c.245]

Второе из следствий общей теории относительности, которое находится в удовлетворительном согласии с наблюдениями, касается движения орбиты планеты Меркурий. По законам классической механики планеты должны двигаться по эллиптическим орбитам, которые покоятся в коперниковой системе отсчета. Однако уже специальная теория относительности вводит поправку в эти законы. Как показано в конце 75, вследствие зависимости массы от скорости орбиты планет дол жны поворачиваться в том же направлении, в котором планета движется вокруг Солнца. Но исходя из обгцей теории относигельпости, необходимо ввести поправку и в закон тяготения (заменить теорию тяготения Ньютона теорией тяготения Эйнштейна). Те отклонения в характере движения планешых орбит, которые должны наблюдаться при замене теории тяготения Ньютона теорией тяготения Эйии]тейна, качественно оказываются такими же, как отклонения, получающиеся при учете зависимости массы от скорости, но количественно эти отклонения больше. В то время как учет зависимости массы от скорости дает угловую скорость вращения орбиты Меркурия около 7" в столетие, замена теории тяготения Ньютона теорией тяготения Эйнштейна приводит к увеличению скорости вращения орбиты Меркурия до 45 в столетие. Приблизительно такие же результаты дают наблюдения. Все же точность этих наблюдений не столь высока, чтобы можно было считать, что OHI надежно подтверждают общую теорию относительности. Но во всяком случае можно считать, что эти результаты находятся в удовлетворительном согласии с выводами общей теории относительности.  [c.386]

Это не означало, что представление о силе, действующей на расстоянии, стало приемлемым, но вычисления, произведенные на основе допущения,что тяготение как бы действует на расстоянии, подтверждались. Поэтому к загадочному тяготению начали привыкать, и различные физические схемы для его истолкования, которые предлагались некоторыми учеными, не вызывали особого интереса. К тяготению по Ньютону привыкали тем основательнее, чем больше вычисляли, чем больше разрабатывали методы небесной механики, плодотворность которых выявлялась все убедительнее. В астрономии происходила явная смена вкусов в начале XIX в. Деламбр отмечал, что в его дни вычислять любят так же сильно, как не любили вычислять сто лет назад. И крупные успехи небесной механики, основанной на всемирном законе тяготения и на представлении о силе как причине движения, действующей согласно второму закону Ньютона, не могли не влиять на трактовку задач механики земной.  [c.122]

Закон площадей — прообраз и частный случай общего закона моментов количеств движения — был установлен впервые Кеплером для движения планет. Кеплер показал, что его второй закон справедлив как для теории Коперника, так и для теорий Птолемея и Тихо Браге. Возможно, что это обстоятельство побудило Ньютона к дальнейшему обобщению. В Началах он доказал и то, что закон площадей для планетных орбит является следствием закона тяготения (планет к Солнцу) в принятой Ньютоном форме, и то, что этот закон справедлив при движении тела под действием любой силы постоянного направления, проходящей через неподвижный центр. Но переход к более общей закономерности не был напрашивающимся, так как момент силы относительно этого центра тождественно равен нулю и в случае, который рассматривал Ньютон. Этот переход был облегчен развитием статики — оперирование моментами (сил) относительно ося или точки как алгебраическими величинами стало там обычным благодаря трудам Вариньона. Все же новое обобщение закона площадей было получено только в работах 40-х годов XVIII в. Все эти работы связаны с задачами о движении тел на движущихся поверхностях. Подобные задачи ставились и в земной, и в небесной механике. Иоганн и Даниил Бернулли начали изучение таких вопросов для случая, когда движущаяся поверхность — наклонная плоскость. Клеро немало содействовал успеху в этой тогда новой области механики своими результатами по теории относительного движения. Вслед за ним Эйлер в большой работе О движениях тел по подвижным поверхностям от-  [c.125]

Такое сравнение >бедило Ньютона в справедливости предложенного им закона тяготения. Астрономические наблюдения и расчеты также подтверждают справедливость закона тяготения. Заметим, что для проверки закона тяготения по движению Луны Ньютону не нужно было знать постоянную тяготения у  [c.271]

Отсюда,— по выражению Энгельса,— начинает свое летосчисление освобождение естествознания от теологии... (Энгельс, Диалектика природы, 1953, стр. 5). Открытие Коперника вызвало зарождение небесной механики — науки о движении небесных тел. Иоганн Кеплер (1571—1630) па основании учения Коперника и многочисленных астрономических наблюдений установил три закона движения плапет (законы Кеплера), которые в дальнейшем послужили Ньютону основой для открытия закона всемирного тяготения.  [c.18]

В XIX веке развитие небесной механики происходило по двум основным направлениям. Первое направление, которое назовем для краткости астрономическим, имело своей целью создание аналитических теорий движения реальных небесных тел Солнечной системы. Работы этого направления были посвяш ены выводу приближенных, буквенных формул, являюш ихся обрывками бесконечных рядов, формально удовле-творяюш их дифференциальным уравнениям движения рассматриваемых тел. Сами эти тела (Солнце, Луна, Земля, большие планеты) рассматривались как материальные точки, взаимно притягиваюш иеся по закону всемирного тяготения Ньютона.  [c.324]

Напомпю проблема финальных движений в задаче трех материальных точек состоит в описании поведения этих точек, взаимодействующих между собой по закону всемирного тяготения Ньютона, при i — —00 и при i — 00.  [c.10]

Закон всемирного тяготения Ньютона подвергался многократной косвенной проверке — предсказание поведения естественных небесных тел, проверка на опыте расчетов движения искусственных небесных тел и т. д. Прямая проверка производилась в лаборатории (знаменитые опыты Кавендиша), где измерялась и величина универсальной постоянной тяготения. В результате все опыты и вся практика показали, что теория Ньютона дает поразительные по точности результаты. Теория Ньютона не смогла объяснить лишь малую долю смещения перигелия планеты Меркурий, которая составляет 42 угловые секунды за сто лет (см. 10).  [c.133]


В своих Prin ipia Ньютон дает разъяснения и определения основных понятий механики массы, времени, пространства, силы, а также устанавливает основные законы движения (аксиомы), которые были приведены в 1. На основании этих понятий и аксиом, представляющих собой обобщение многочисленных опытов и наблюдений, логически строится с помощью математического анализа вся система механики. Кроме создания системы механики, Ньютону принадлежит открытие закона всемирного тяготения, который лег в основу теоретической астрономии и небесной механики. В своих исследованиях Ньютон не пользуется методами открытого им анализа бесконечно малых, а употребляет главным образом геометрические методы, строя изложение по образцу Начал Евклида.  [c.12]

Космология по Ньютону . Выше уже отмечалось, что силы тяготения определяют движения планет и Галактик, эволюцию Вселенной в целом. Нельзя ли, используя законы Ньютона, попытаться построить хотя бы приближенную модель дш1амики Вселенной Это представляется возможным, но на это впервые указали английские астрофизики Э. Милн и В. Маккри всего лишь в 1934 г., т. е. спустя почти 250 лет после Ньютона. Парадоксально, но модель динамики Вселенной могла быть построена еще Ньютоном. Вероятнее всего, это не было сделано в силу прочно укоренившегося еще со времен Древней Греции представления о неизменности, стационарности Вселенной. О динамике Вселенной долгое время никто даже и не догадывался. Поэтому излагаемая ниже космология по Ньютону появилась уже после создания А. Эйнштейном в 1917 г. общей теории относительности, после теоретического предсказания А. Фридманом в 1922 г. расширения Вселенной, после экспериментального подтверждения этого явления в 1929 г. американским астрономом Э. Хабблом. Ньютоновская космологическая модель дает первый набросок эволюции Вселенной, раскрывает новые грани в раскрытии физической сущности гравитационной постоянной.  [c.58]

Аналитическая форма механики, развитая Эйлером и Ла-гранжем, существенно отличается по своим методам и принципам от механики векторной. Основной закон механики, сформулированный Ньютоном произведение массы на ускорение равно движущей силе ,— непосредственно применим лишь к одной частице. Он был выведен при изучении движения частиц в поле тяготения Земли, а затем применен к движению планет под воздействием Солнца. В обоих случаях движущееся тело могло рассматриваться как материальная точка или частица , т. е. можно было считать массу сосредоточенной в одной точке. Таким образом, задача динамики формулировалась в следующем виде Частица, которая может свободно перемещаться в пространстве, находится под действием заданной силы. Описать движение в любой момент времени . Из закона Ньютона получалось дифференциальное уравнение движения, и решение задачи динамики сводилось к интегрированию этого уравнения Если частица не является свободной, а связана с други ми частицами, как, например, в твердом теле или в жидкости то уравнение Ньютона следует применять осторожно. Не обходимо сначала выделить одну частицу и определить силы которые на нее действуют со стороны остальных, окружа ющих ее частиц. Каждая частица является независимым объектом и подчиняется закону движения свободной частицы Этот анализ сил зачастую является затруднительным Так как природа сил взаимодействия заранее неизвестна приходится вводить дополнительные постулаты. Ньютон полагал, что принцип действие равно противодействию известный как его третий закон движения, будет достаточен для всех проблем динамики. Это, однако, не так. Даже в динамике твердого тела пришлось ввести дополнительное предположение о том, что внутренние силы являются цен-  [c.25]


Смотреть страницы где упоминается термин Движение по закону тяготении Ньютона : [c.117]    [c.125]    [c.12]    [c.145]    [c.49]    [c.42]    [c.235]    [c.127]   
Смотреть главы в:

Аналитическая динамика  -> Движение по закону тяготении Ньютона



ПОИСК



Закон Ньютона,

Закон движения

Закон тяготения

Закон тяготения Ньютона

Ньютон

Ньютона закон (см. Закон Ньютона)

Ньютона законы движения

Ньютона) тяготения Ньютона

Тяготение



© 2025 Mash-xxl.info Реклама на сайте