Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Лагранжева и гамильтонова динамики

Эквивалентность лагранжевой и гамильтоновой динамики. Под лагранжевой динамикой мы понимаем теорию, изложенную в 64 и 65, основанную на однородном лагранжиане Л(а , х ) или на обычном лагранжиане  [c.226]

ЛАГРАНЖЕВА И ГАМИЛЬТОНОВА ДИНАМИКИ 401  [c.401]

Лагранжева и гамильтонова динамики. Можно не класть в основу динамики уравнения движения в форме  [c.401]

Автор благодарен дирекции Университетского издательства в Торонто, которая предоставила ему возможность дополнить свою книгу этим материалом, относящимся к одному из наиболее поразительных открытий человеческого гения. В этой главе в очень сжатой форме, но последовательно изложены все основные идеи, принципы и результаты Эйнштейна, относящиеся к кинематике и динамике одной частицы. Общая теория преобразований Лоренца изложена при помощи гамильтоновых кватернионов. Они так удачно подходят для этой цели, что вряд ли найдется другой математический аппарат, столь же простой и компактный. Уравнения поля общей теории относительности, естественно, не вошли в эту книгу, однако здесь подробно рассматриваются динамические аспекты гравитационной теории Эйнштейна, в том числе три решающих эксперимента по проверке теории, поскольку они не выходят за рамки лагранжевой и гамильтоновой форм динамики.  [c.14]


После того как это сделано, безразлично, излагать ли динамику в терминах Л или L или положить в основу уравнение Q = О или Н. Соответствие устанавливается требованием равенства лагранжева и гамильтонова действий для произвольной кривой в пространстве QT.  [c.226]

Однако научное значение классической динамики, в частности и ньютоновой динамики, не исчерпываются только физическими предсказаниями, которые делаются непосредственно на их основе. Ньютонова динамика состоит из совокупности математических выводов и заключений, полученных подчинением некоторых простых понятий некоторым простым законам. В математическом развитии предмета были развернуты общие схемы (в частности, лагранжев и гамильтонов метод), которые позволяют заменить первоначальные примитивные понятия более общими (такими как пространство конфигураций и фазовое пространство). Оказалось, что эти новые математические понятия могут быть использованы, чтобы представить физические понятия, отличные от тех, рассмотрение которых было источником понятий математических. Таким образом, ньютонова динамика породила новые физические выводы путем приложения внутренне присущих ей математических идей за пределами их исходной области применения. Примерами этого могут быть применение лагранжевых методов к теории электрических контуров и (что еще более удивительно) применение гамильтоновых методов в развитии квантовой механики.  [c.14]

Общая динамическая теория занимает любопытное положение в физике. Исторически она была создана и развилась в форме ньютоновой динамики частиц и твердых тел. Но мы чувствуем настоятельную необходимость дать ей более широкую область применения, рассматривая ее как последовательную математическую теорию, приложимую к любой физической системе, поведение которой можно выразить в лагранжевой или гамильтоновой форме. Здесь возникает соблазн рассматривать эту теорию как чистую математику.  [c.199]

Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]


Мы уже неоднократно встречались с гамильтоновыми системами, как в примерах, так и в тех случаях, когда они порождались лагранжевыми системами. Цель этого параграфа состоит в том, чтобы дать краткое аксиоматическое описание современного подхода к гамильтоновой динамике, а также представить некоторые структурные результаты этой теории, которые в определенных случаях дают законченное качественное описание динамики.  [c.226]

Следует заметить, что исторически указанный выше путь для вывода уравнений (50 ), (50") является в существенных чертах тем, которым Гамильтон пришел к установлению связи между задачей интегрирования уравнений динамики и задачей интегрирования уравнений в частных производных, показав, что если известна главная функция S ( 119°), то можно определить посредством одних только операций вида (50 ), (50") общее решение лагранжевой системы (31) или, лучше, соответствующей гамильтоновой системы (31 ),  [c.440]

Наиболее естественные и удобные для исследований формы уравнений движения твердого тела могут быть получены из общих уравнений динамики в квазикоординатах. Лагранжева форма этих уравнений была установлена А. Пуанкаре [255], а гамильтонова — П. Г. Четаевым [181]. Их возможные обобщения для неголономной ситуации рассматривались в [91, 154]. В динамике твердого тела уравнения Пуанкаре-Четаева приводят к гамильтоновым уравнениям с линейным структурным тензором, т. е. к только что рассматривавшейся структуре Ли-Пуассона (см. 1). Приведем здесь свой вывод уравнений Пуанкаре и Пуанкаре-Четаева, т.к. их обсуждение отсутствует в доступной литературе.  [c.33]

Аналитическую динамику для гинердвижения релятивистской материальной точки можно записать в нескольких вариантах, причем речь идет о записи одних и тех же уравнений в лагранжевой и гамильтоновой формах, но в разных функциональных обозначениях.  [c.255]

Цель учебника — изложить фундаментальные принципы и методы теоретической механики, научить читателя активно применять современный математический аппарат для решения конкретных задач динамики, подготовить к анализу широкого круга проблем, изучаемых в курсе теоретической физики. Основное внимание уделено исследованию классических и современных задач механики в рамках лагранжева и гамильтонова подходов, методам гамильтонизации систем нелинейных уравнений и новым методам интегрирования канонических систем.  [c.1]

Интересно заметить, что связь между лагранжевой и гамильтоновой формой понятна большинству механиков только в канонической записи. Так в книге [21] гамильтонова форма уравнений динамики твердого тела считается заведомо установленной из некоторых не вполне естественных соображений, в частности, со ссылкой на работу [133], в которой реально автор, не зная общего формализма динамических уравнений, даже переоткрывает углы Эйлера и сопряженные им импульсы. Далее в [21] доказывается несколько странных теорем, что из гамильтоновой формы можно получить лагранжеву, при этом, конечно, возникает некоторая путаница, так как пуассонова коммутация компонент момента с импульсами и направляющими косинусами одинакова, и одни и те же уравнения Кирхгофа можно представлять себе как часть импульсных уравнений на группе (3) — уравнения Эйлера - Пуанкаре для М, р, которая в случае отсутствия потенциала отделяется от позиционных уравнений (для направляющих косинусов), а с другой стороны — как гамильтоновы уравнения на 30(3), при этом необходимо интерпретировать компоненты импульсивной силы р как направляющие косинусы. В этом, кстати, заключается аналогия Стеклова [272] (см. также 4 и гл. 3, 1).  [c.38]

Важное качественное свойство лагранжевой динамики и гамильтоновой динамики заключается в том, что они сохраняют определенную каноническую форму объема. Действительно, во-первых, из координатного представления (5.3.6) немедленно следует, что уравнения Гамильтона являются бездивергентными, так что они сохраняют фазовый объем в х, р)-простран-стве, который на самом деле представляет собой п-ю внешнюю степень формы fi. Возвращаясь на касательное расслоение с помощью инверсии преобразования Лежандра, мы видим, что инвариантный объем является произведением формы объема на многообразии и евклидова объема, определенного в касательном пространстве римановой метрикой. Лагранжева система сохраняет гиперповерхности Н = onst, так что для каждого регулярного значения Н имеется индуцированная инвариантная форма объема на гиперповерхности Н — onst. Это особенно просто понять в случае геодезических потоков, когда инвариантные гиперповерхности являются сферическими расслоениями г) = onst и инвариантный объем потока есть  [c.212]

Класснч. электродинамика не противоречит возможности существования маги, зарядов. Однако, в отличие от поля электрнч. зарядов и токов, иоле, создаваемое магн. зарядами, не может бглть описано с помощью нектор-нотенциала ((х=0, 1, 2, 3) непрерывного 110 всем пространстве. Поэтому при наличии магы. зарядов ур-иия движения заряж. частнц не выводятся из вариационного наименьшего действия принципа. В классич. электродипамике это не приводит к принципиальным трудностям (хотя п делает теорию несколько менее красивой), ио квантовую динамику невозможно сформулировать вне рамок гамильтонова формализма или лагранжева формализма, основанных на вариац. принципе.  [c.687]


Идеи современной дифференциальной геометрии все шире проникают в аналитическую механику. В работах А. В. Арнольда [1], Абрахама 2], К. Годбийона [3] показано, что дифференциальная геометрия может рассматриваться как естественный фундамент классической механики. При этом четко разграничиваются два аспекта механики гамильтонов и лагранжев. Гамильтонова динамика связана с существованием симплектической структуры на кокасательном расслоении конфигурационного пространства механической системы. Введение Клейном [4 специального дифференциального исчисления на касательном расслоении позволяет связать лагранжеву динамику с симплектической структурой касательного расслоения конфигурационного пространства.  [c.51]

Первое издание книги опубликовано издательством Московского университета в 1988 г. Во втором издании книги приведены решения 160 новых задач. Включена новая глава 11 Релятивистская механика . Теперь сборник содержит решения 560 задач, иллюстрируюш их приложения методов теоретической механики к исследованию широкого круга проблем. Представлены задачи по всем разделам классической механики динамика частицы во внешнем поле и тел переменной массы, динамика системы частиц, уравнения Лагранжа, линейные и нелинейные колебания, динамика твердого тела, электромеханика, уравнения Гамильтона и канонические преобразования. Задачи по электромеханике рассмотрены в рамках лагранжева формализма. Включены также 42 задачи по релятивистской динамике, которые отсутствуют в известных сборниках задач по механике. Ряд задач, представляюш их различные аспекты одной проблемы, представлен в нескольких разделах сборника. Значительно расширен раздел, включаюш ий множество задач, иллюстрируюш их применение новых методов интегрирования систем нелинейных уравнений обш его вида, представленных в гамильтоновой форме.  [c.5]


Смотреть страницы где упоминается термин Лагранжева и гамильтонова динамики : [c.403]    [c.8]    [c.265]    [c.911]    [c.220]    [c.4]   
Смотреть главы в:

Классическая динамика  -> Лагранжева и гамильтонова динамики



ПОИСК



Восьмая лекция. Интеграл Гамильтона и вторая Лагранжева форма уравнение динамики

Гамильтон

Динамика гамильтонова

Динамика лагранжева

Зэк гамильтоново

Примеры соответствий лагранжевой и гамильтоновой динамик

Эквивалентность лагранжевой и гамильтоновой динамики



© 2025 Mash-xxl.info Реклама на сайте