Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Устойчивость движения Основные понятия и определения

Эта глава, которая является вводной, содержит изложение основных понятий и положений, необходимых для изучения нелинейных колебаний. Прежде всего следует сказать несколько слов о колебательных явлениях вообще и о нелинейных колебаниях в частности. Общие закономерности, которыми обладают колебательные процессы в системах различной физической природы, составляют предмет науки, получившей название теории колебаний. Под колебательным явлением принято понимать либо то, что связано с фактом установившегося движения в рассматриваемой системе, либо то, что связано с процессом перехода от одного установившегося движения к другому. Установившееся движение характеризуется повторяемостью и определенной устойчивостью (смысл последнего понятия будет уточнен ниже). Переходные процессы характеризуются тем установившимся движением, к которому они приближаются. Множество переходных процессов данного установившегося движения образует его область притяжения. Смена установившихся движений, которая происходит в результате изменения какого-нибудь физического параметра рассматривае.мой системы при его переходе через некоторое значение, называется бифуркацией. Если при этом смена установившихся движений происходит достаточно быстро, т. е. скачкообразно, то говорят о жестком возникновении нового режима. В противном случае возникновение нового режима называют мягким . Колебательные явления, возникающие в так называемых нелинейных системах, называются нелинейными колебаниями. Однако, прежде чем определить, что такое нелинейная система, рассмотрим более общий класс систем, называемых динамическими системами.  [c.7]


Понятие устойчивости движения является в теории нелинейных колебаний одним из основных понятий, поэтому остановимся на нем подробнее. Среди многих определений устойчивости наиболее известны устойчивость по Ляпунову и орбитная устойчивость. В отношении состояния равновесия эти определения совпадают и состоят в следующем. Состояние равновесия х = х называется устойчивым, если для любого числа е > О можно указать настолько малое число б (е), что для любого другого движения х = = X (i) с начальными условиями, отличающимися от х менее чем на б, при всех последующих значениях i выполняется неравенство  [c.13]

Книгу условно можно разделить на три части. В первой части (главы 1, 2, 3) формулируются основные задачи исследования динамики и устойчивости механизмов с упругими связями, приводятся дифференциальные уравнения динамики механизмов с упругими связями на примерах простейших динамических моделей дается представление об устойчивости периодических режимов движения вибрационных и виброударных систем, вводятся основные понятия и определения (глава 1).  [c.8]

Ляпунов впервые математически точно определил понятия устойчивости, которые служат основанием для решения разнообразных задач, относящихся к устойчивости движения и равновесия динамических систем. Поэтому, излагая работы в области устойчивости рабочего процесса в ЖРД, мы считали необходимым, привести точные определения основных понятий устойчивости в той форме, как они были установлены Ляпуновым [123], [124], [125].  [c.142]

Управляемость как степень восприимчивости объекта управления к воздействию рулей и устойчивость, характеризующая как бы невосприимчивость к подобному воздействию, являются в известном смысле противоречивыми понятиями. Действительно, чем более устойчив летательный аппарат, снабженный мощным хвостовым оперением, тем труднее осуществить его поворот при помощи руля. Правильный выбор соответствующей аэродинамической схемы, конкретной конструкции летательного аппарата, его органов управления и стабилизации с точки зрения обеспечения наивыгоднейшей управляемости и устойчивости составляет важнейшую задачу современной аэродинамики, в частности аэродинамической теории управления и стабилизации. При этом обеспечение управляемости и устойчивости связано с исследованием динамических свойств такого аппарата, описываемых указанной системой уравнений возмущенного движения. Их коэффициенты определяются компоновочной схемой, которой соответствуют определенные аэродинамические и геометрические характеристики, а также параметры движения по основной траектории. В результате решения этих уравнений выбирают наиболее рациональную динамическую схему летательного аппарата и соответствующую ей конструктивную компоновку, которая бы удовлетворяла баллистическим, технологическим и эксплуатационным требованиям, а также заданной управляемости и устойчивости.  [c.6]

Понятие динамической устойчивости связано с двумя видами движения летательного аппарата — невозмущенным (основным) и возмущенным. Движение называют невозмущенным (основным), если оно происходит по определенной траектории со скоростью, изменяющейся в соответствии с каким-либо заданным законом, при стандартных значениях параметров атмосферы и известных начальных параметрах этого движения. Эта теоретическая траектория, описываемая конкретными уравнениями полета с номинальными параметрами аппарата и системы управления, также называется невозмущенной. Благодаря воздействию случайных возмущающих факторов (порывы ветра, помехи в системе управления, несоответствие начальных условий заданным, отличие реальных параметров аппарата и системы управления от номинальных, отклонение действительных параметров атмосферы от стандартных), а также возмущений от отклонения рулей основное движение может нарушиться. После прекращения этого воздействия тело будет двигаться, по крайней мере, в течение некоторого времени по иному закону, отличному от первоначального. Новое движение будет возмущенным.  [c.37]


Прежде всего рассматривается задача о равновесии системы (статика системы), решение которой дается на основе принципа возможных перемещений. Вводится понятие обобщенных сил и формулируются аналитические условия равновесия. Здесь же можно кратко рассмотреть вопрос об устойчивости равновесия. Далее, как обычно, рассматривается принцип Даламбера и выводятся уравнения Лагранжа 2-го рода. Тем самым указывается метод решения основных задач динамики несвободной системы. Здесь же рассматриваются некоторые другие вопросы. Две системы активных сил, приложенных к определенной системе точек, называются эквивалентными, если их обобщенные силы совпадают при каком-нибудь выборе обобщенных координат (или если они выполняют одинаковую работу на любом возможном перемещении). Это определение вытекает из того факта, что активные силы входят в уравнения движения только через обобщенные силы, вследствие чего замена системы сил ей эквивалентной не сказывается на движении. Следует иметь в виду, что две эквивалентные в указанном смысле системы сил могут вызывать, конечно, различные реакции связей. Но в ряде задач эти реакции не представляют интереса и это различие можно игнорировать. Если это не так, то с помощью принципа освобождаемости реакции связей следует перевести в разряд активных сил.  [c.75]

Теоретичеокие движения, обладающие/вторым и первым свойствами, называются соответственно устойчивыми и неустойчивыми Мы не приводим здесь строгих ляпуновских определений этих основных понятий, открывающих путь к созданию математической теории устойчивости движения.  [c.11]

В постановке и решении ряда задач аэродинамики, в частности для схематизации движения воздуха и его действия на тела, немаловажную роль ыграли различные гидродинамические модели [26] При этом большую роль сыграли ударная теория сопротивления И. Ньютона (1686 г.), теория идеальной несжимаемой жидкости, разработанная Д. Бернулли (1738 г.) л Л. Эйлером (1769 г.), теория вязкой несжимаемой жидкости, созданная А. Навье (1822 г.) и Дж. Г. Стоксом (1845 г.), теория струйного обтекания тел, развитая Г. Гельмгольцем (1868 г.), Г. Кирхгофом (1869 г.), а в дальнейшем Рэлеем (1876 г.), Д. К. Бобылевым (1881 г.), Н. Е. Жуковским (1890 г.), Дж. Мичеллом (1890 г.), А. Лявом (1891 г.). Особое значение для становления аэродинамики имели работы Г. Гельмгольца, заложившего основы теории вихревого движения жидкости (1858 г.). В начале XIX в. появились понятия подъемной силы (Дж. Кейли) и центра давления. Дж. Кейли впервые попытался сформулировать основную задачу расчета полета аппарата тяжелее воздуха как определение размеров несуш,ей поверхности для заданной подъемной силы [27, с. 8]. В его статье О воздушном плавании (1809 г.) предложена схема работы плоского крыла в потоке воздуха, установлена связь между углом атаки, подъемной силой и сопротивлением, отмечена роль профиля крыла и хвостового оперения в обеспечении продольной устойчивости летательного аппарата я т. п. [28]. Кейли также занимался экспериментами на ротативной маши-де. Однако его исследования не были замечены современниками и не получили практического использования.  [c.283]

Изэнтропические одно.мерные движения газа с плоскими волнами представляют собой одну из простейших моделей неустановившихся движений газа. Она наиболее богата как конкретными фактами, так и разнообразными до конца решенными задачами. Исторически на этой. модели отрабатывались не только. многие понятия и аналитические построения нестационарной газовой динамики, но также и алгоритмы численного расчета ее основных краевых задач. Условие изэнтропичности, конечно, является сильно ограничительным, так как оно не позволяет во всей общности рас-с.матривать движения с ударными волнами, в результате прохождения которых по газу энтропия меняется и, вообще говоря, становится переменной по частицам. Однако и здесь возможно искусственное моделирование сильных разрывов, на которые надо наложить определенные условия устойчивости (см., например, [6]).  [c.146]


Смотреть главы в:

Теоретическая механика  -> Устойчивость движения Основные понятия и определения



ПОИСК



160, 387, 388 — Определение Понятие

Движение устойчивое

Определение Устойчивость

Определение понятия устойчивости движения

Определение устойчивости движения

Основные Основные определения

Основные определения

Основные понятия 1.2. Основные понятия и определения

Основные понятия и определения

Устойчивости понятие

Устойчивость движения



© 2025 Mash-xxl.info Реклама на сайте