Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теплопроводность круглого ребра постоянной толщины

ТЕПЛОПРОВОДНОСТЬ КРУГЛОГО РЕБРА ПОСТОЯННОЙ ТОЛЩИНЫ  [c.55]

Ребра, имеющие переменное поперечное сечение по высоте, рассчитываются значительно сложнее, чем прямые ребра постоянного сечения. Рассмотрим расчет теплопроводности круглого ребра постоянной толщины (рис. 2-15). Круглые ребра применяются при оребрении цилиндрических поверхностей (труб).  [c.55]

Пусть имеется труба с круглым ребром постоянной толщины. Внутренний радиус ребра ri и внешний Г2, толщина 6 и коэффициент теплопроводности Я (рис. 10-13). Температуру окружающей среды условно принимаем равной нулю. Температура ребра изменяется лишь в направлении радиуса = f(r), в основании и на конце ребра температура соответственно равна - 1 и 1 2. Коэффициент теплоотдачи равен а.  [c.289]


Самым ответственным этапом расчета нагрузочной способности полимерного подшипника является определение параметра теплоотвода узла Кт, в котором этот подшипник эксплуатируется. Значение этого параметра в основном зависит от конструкции подшипникового узла. Все многообразие корпусов подшипниковых узлов можно свести к четырем типовым конструкциям, схематически изображенным на рис. 3.2. Общим для этих схем является наличие полимерного слоя в подшипнике, обладающего низкой теплопроводностью и затрудняющего теплоотвод через корпус подшипника. Корпусом типа I являются стенки коробок, типа II — зубчатое колесо, типа III — деталь более сложной конфигурации (например, блок-шестерня). Корпус типа IV имеет малую протяженность в радиальном и значительную в осевом направлениях его радиальное сечение представляет собой кольцо. Теплоотвод от подшипника через корпуса, выполненные по типам I, II, III, осуществляется в радиальном направлении. Его можно рассматривать как теплоотвод через цилиндрическую стенку полимерного слоя подшипника и стальное круглое ребро постоянной толщины (рис. 3.3, а). Теплоотвод через корпус, выполненный по типу IV, осуществляется в осевом направлении и рассматривается как теплоотвод через цилиндрическую стенку полимерного слоя подшипника и стальную трубу постоянного сечения (рис. 3.3, б). Поскольку обойму подшипника (если таковая имеется) и корпус, в который он запрессовывается, изготовляют обычно из одного и того же материала  [c.82]

Пример 10-5. Рассчитать теплоотдачу круглого чугунного ребра постоянной толщины S = 3,6 мм внутренний радиус ребра г- = 60 мм и наружный Га = 120 мм, коэффициент теплоотдачи а = 30 Вт/(м -°С), коэффициент теплопроводности чугуна X, = 30 Вг/(м °С), = 80°С.  [c.313]

К круглому стержню диаметром 2 присоединено полукруглое ребро толщиной 0,3 с внешним радиусом 3,5 (рис. 8.23). Поверхность стержня имеет постоянную температуру 250. Ребро теряет тепло в окружающую среду, имеющую температуру = 27, коэффициент теплоотдачи равен 12. Съем тепла сребра происходит с плоских концов / и 2, полукруглого торца 5, верхней и нижией поверхностей 4 w 5. Теплопроводность материала ребра равна 3,7. Изменение температуры по толщине ребра пренебрежимо мало. Подготовьте подпрограмму ADAPT для получения стационарного распределения температуры в ребре. Обеспечьте вывод на печать значений суммарного теплового потока через поверхность ребра.  [c.173]


Смотреть страницы где упоминается термин Теплопроводность круглого ребра постоянной толщины : [c.552]    [c.135]   
Смотреть главы в:

Теплопередача Изд.3  -> Теплопроводность круглого ребра постоянной толщины

Теплопередача  -> Теплопроводность круглого ребра постоянной толщины



ПОИСК



Ребро



© 2025 Mash-xxl.info Реклама на сайте