Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Опоры с подшипниками скольжени в корпус

Конструкция опор валов с подшипниками скольжения зависит от условий их работы. Наиболее часто подшипники скольжения устанавливают в труднодоступных местах с повышенной запыленностью. В качестве примера на рис. 12.1 показана промежуточная опора вала тихоходного винтового конвейера с подшипниками скольжения. В этом случае подшипник скольжения воспринимает только радиальную нагрузку. Подшипник скольжения состоит из корпуса 5, вкладыша 7, который служит рабочим элементом, и смазочного устройства, включающего колпачковую масленку 6 и смазочную трубку  [c.216]


Вспомогательные механизмы, расположенные на входном патрубке, приводятся от вала компрессора через коническую зубчатую передачу, расположенную в обтекаемом конусе, и через вал, который проходит через полую радиальную опору конуса к редуктору вспомогательных механизмов. В обтекаемом конусе для поддержания вала конической зубчатой передачи, который соединен с валом компрессора гибкой муфтой, имеются два подшипника скольжения. Неразъемный корпус упорного подшипника на фланце крепится к входному патрубку компрессора. Масло к подшипнику поступает через внутреннее сверление под давлением 8,5 ama. Слив масла осуществляется через полую радиальную опору обтекаемого конуса и далее по специальной трубке в масляный картер. Для предотвращения утечек масла рядом с подшипником установлено лабиринтовое уплотнение. Воздух для него подается из отбора за третьей ступенью компрес-  [c.25]

Сборка шпинделей с подшипниками скольжения. Технологический процесс сборки шпинделей должен обеспечивать получение перечисленных норм точности. Для этого необходимо создать при сборке шпинделей с опорами скольжения плотное прилегание поверхностей сопрягаемых деталей. Плотность прилегания наружных поверхностей втулки при запрессовке ее в корпус достигается путем выбора надлежащей посадки и правильной запрессовки. Для получения плотного. прилегания опорных шеек шпинделя к поверхностям опорных втулок, а также для получения их соосности производится шабрение поверхностей втулок, предварительно по специальной оправке, имеющей форму шпинделя, н окончательно по шпинделю. Шабрение производится, в зависимости от требуемой  [c.358]

Крышки 13, 31 и промежуточная опора 30 крепятся к корпусу винтами. В крышках и опоре установлены три бронзовых подшипника скольжения, в которых вращается вал якоря 8. Обмотка якоря состоит из 29 секций. В каждой секции один виток. Концы секций припаяны к пластинам коллектора 14. Секции выполняют из голого медного провода прямоугольного сечения. Для изоляции секций от железа сердечника якоря используется электротехнический картон. Осевой люфт вала якоря регулируют изменением толщины регулировочной шайбы 1, которая удерживается упорным кольцом 2 с замочным кольцом.  [c.137]

Плавающими желательно делать менее нагруженные опоры. Как показывает практика, неточность изготовления может привести к осевому смещению валов, достигающему несколько миллиметров. При осевом смещении появляются дополнительные нагрузки в зацеплении и на подшипники. Под действием сил трения возможен износ посадочных поверхностей в корпусах, поэтому для плавающих опор желательно применять подшипники с короткими цилиндрическими роликами или подшипники скольжения. В двухступенчатом редукторе с раздвоенной быстроходной парой тихоходная пара может быть выполнена с прямыми, косыми и шевронными зубьями. В первых двух случаях опоры ведомого вала должны быть фиксирующими, а в третьем — плавающими.  [c.120]

Конструктивные разновидности подшипников скольжения. В качестве опор для осей и валов в неответственных механизмах служат отверстия, расточенные непосредственно в корпусе механизма. Чаще всего в корпусе устанавливают бронзовую или чугунную втулку. В зависимости от того, какую нагрузку воспринимает опора, втулки могут быть гладкими при отсутствии осевых усилий (рис. 103, а) с ОДНИ.М буртиком при действии осевого усилия в одном направлении (рис. 103, б) с двумя буртиками при небольшом осевом усилии в обоих направлениях (рис. 103, в).  [c.147]


Процесс сборки подшипников скольжения состоит из их установки, пригонки, укладки вала и иногда регулирования опор. Подшипники скольжения применяются цельными, в виде втулок, и разъемными. Установка цельного подшипника в корпус заключается обычно в его запрессовке, закреплении от провертывания и подготовке отверстия. Запрессовка в зависимости от размеров втулки, натяга в сопряжении, конструкции узла н программы выпуска может быть выполнена в холодном виде, с нагревом отверстия корпуса или же с охлаждением самой втулки.  [c.502]

Различают опоры скольжения (подшипники скольжения) и качения (подшипники качения). Первые в общем случае состоят из разъемного корпуса с двумя или четырьмя крепежными отверстиями и вкладышей (рис. 9.34), вторые (рис. 9.35) —из на-  [c.305]

Опорами ротора служат два подшипника скольжения 1 с кольцевой смазкой корпуса подшипников и вкладышей имеют горизонтальный разъем. Уровень масла в подшипнике контролируется маслоуказателем (щупом). В корпусах подшипников предусмотрены камеры для охлаждающей воды.  [c.24]

Корпуса подшипников скольжения предназначены для применения в оборудовании с раздельной установкой опор валов  [c.54]

Опорами валов и вращающихся осей, а также вращающихся деталей на неподвижных осях служат подшипники. Они воспринимают и передают на корпус или раму машины (в последнем случае - через неподвижную ось) радиальные и осевые нагрузки. Разновидностью подшипников являются подпятники, устанавливаемые на пятах валов и осей и служащие для передачи на корпус машины только осевых нагрузок. По способу передачи нагрузок различают подшипники скольжения и качения. В подшипниках скольжения цапфа вращающегося вала или оси взаимодействует непосредственно с рабочей поверхностью вкладыша неподвижно установленного подшипника, а в подшипниках качения это взаимодействие происходит между двумя кольцами подшипника (одно из колец одето на цапфу, а второе неподвижно закреплено на раме) через тела качения (шарики или ролики). Подшипники могут также передавать те же нагрузки между двумя вращающимися с разными угловыми скоростями деталями.  [c.53]

Под самоустановкой понимают следование оси опоры за осью вала. В опорных подшипниках скольжения этого добиваются двумя путями 1) выполнением опорной поверхности вкладыша сферической формы или в виде узкого цилиндрического пояска 2) установкой подшипника на эластичной опоре или выполнением его с упругим корпусом.  [c.342]

На рис. 91 показаны опоры цапф конвертера на сферических подшипниках. Подшипник в плавающей>з опоре во избежание изнашивания расточки корпуса установлен на вкладыш, изготовленный из материала с повышенными противозадирными свойствами (например, из антифрикционного чугуна). Иногда для уменьшения трения скольжения внутренняя поверхность вкладыша обрабатывается фосфатом магния или дисульфидом молибдена.  [c.513]

Корпус перебора связан (VI) с гидравлическим механизмом измерителя крутящего момента. Центрирующей опорой корпуса перебора служит подшипник скольжения, установленный в цилиндрическом хвостовике.  [c.318]

Нижней опорой вала служат подшипники скольжения 8 м 10, смазываемые перекачиваемой жидкостью (или жидкостью, подводимой извне). Для смазки подшипников в спиральном корпусе насоса имеются сверления, соединяющие напорную полость насоса с подшипниковыми втулками. Промежуточный подшипник 10 смазывается перекачиваемой жидкостью, поступающей по подвесной трубе и сливаемой обратно в резервуар через отверстие в этой трубе, расположенное выше промежуточного подшипника (при нескольких промежуточных подшипниках после самого верхнего). В случае наружного подвода смазки  [c.67]

В крышках и промежуточной опоре стартера устанавливают подшипники скольжения. Промежуточную опору предусматривают в стартерах с диаметром корпуса 115 мм и более. Опору в виде диска из чугуна, стали или алюминиевого сплава зажимают между корпусом и крышкой со стороны привода или крепят  [c.80]

Выбор материалов трущегося сопряжения должен произво диться с учетом их коррозионной стойкости в рабочей среде. Скорость коррозии материала втулки подшипника скольжения и втулки вала в рабочей среде должна быть не более 0,01 мм/год. При выборе материалов пар трения предпочтение следует отдавать наплавочным материалам, позволяющим экономить дефицитные металлы и обеспечивающим технологич-ность изготовления. В аппаратах, предназначенных для обработки легковоспламеняющихся жидкостей, не допускается при-менение элементов сопряжения из материалов, вызывающих при контактировании искрообразование, например черных ме-таллов. В этих случаях следует применять пары трения сталь— бронза, сталь — пластмасса, сталь — графит. Во избежание схватывания и задиров в концевой опоре сферическую поверхность корпуса и вкладыша следует упрочнять наплавкой, термической обработкой, азотированием и др. Прн необходимости обеспечения высокой износостойкости для втулки вала и втулки подшипника рекомендуется применять следующие сочетания материалов стеллит (наплавка) стеллит (наплавка) стеллит (наплавка) —хромомолибденовая сталь (наплавка) сталь (HR > 40)—чугун или бронза сталь (HR > 40)—пластмасса или графит. Выбор соответствующих марок материалов следует производить в соответствии с рекомендациями, изложенными выше.  [c.191]


Опора качения состоит из корпуса, подшипника качения, устройств для закрепления подшипника на валу и в корпусе, защитных и смазочных устройств подшипника. В зависимости от назначения корпус подшипника качения, так же как и корпус подшипника скольжения, может быть отдельным или выполненным как одно целое с деталью, на которой устанавливается подшипник, например, с корпусом редуктора и т. п.  [c.303]

Опоры скольжения для восприятия осевых нагрузок (подпятники) обычно объединены в одном общем корпусе с подшипником (рис. 164). Опорная часть подпятника представляет собой кольцо или шайбу с прорезанными по торцу смазочными канавками.  [c.242]

Подшипники скольжения с плавающими втулками, рассчитанными на восприятие как радиальных, так п осевых нагрузок, устанавливают в расточках на торцовых стенках среднего корпуса. Установка опор в расточках одного и того же корпуса обеспечивает соосность их.  [c.38]

Подшипники, применяемые в опорах машин и механизмов, делятся на два типа скольжения и качения. В опорах с подшипниками скольжения взаимно-подвижные рабочие поверхности вала и подшипника разделены только смазывающим веществом и вращение вала или корпуса происходит в усдовиях чистого скольжения. В опорах с подшипниками качения между взаимно-подвижными кольцами подшипника находятся шарики или ролики и вращение вала или корпуса происходит в основном в условиях качения.  [c.8]

Ввиду того что подшипники монтируются обычно в отдельных корпусах, при больших расстояниях между опорами для компенсации возможного перекоса вала и его прогибов необходима установка сферических двухрядных радиальных шарико- или роликоподшип-H iKOB. Учитывая, что подшипник, нагруженный значительными радиальными усилиями, не сможет плавать" в осевом направлении ввиду значительной силы трения скольжения в корпусе, желательно фиксировать для восприятия осевой нагрузки более нагруженный подшипник. Второй подшипник с целью унификации корпусов можно взять таким же.  [c.623]

Предложена также конструкция опоры, корпус которой выполнен из бронзы БрАЖ 9-4, а вставки-протекторы — из фторопластовой композиции Ф4-К20 крышки подшипника — из медных сплавов (бронзы, латуни). Такие подшипники скольжения имеют долговечность (в том числе для крупногабаритных аппаратов с тяжелыми валами) в 3. .. 4 раза выше, чем подшипники из пластмассы. Особенно эффективно применение подобных подшипников скольжения в опорах аппаратов, рабочая среда которых содержит абразивные взвеси.  [c.309]

Подшипники скольжения, выполненные для каждой опоры в виде отдельных корпусов (рис. 9.2, 9.3), можно смазывать индивидуально пластичным смазочным материалом с помощью колпачковых масленок 1]. Поперечные отверстия и продольные смазочные канавки вьшолняют по рис. 9.10.  [c.157]

Жесткость валов, вращающихся в не-самоустана вливающихся подшипниках скольжения, должна быть достаточной, чтобы обеспечить необходимую равномерность распределения давления по длине подшипников. Расчет валов и подшипников в совместной работе при рассмотрении задачи как контактной и как гидродинамической приводится в специальной литературе. Применяют также упрощенные расчеты, в которых допустимый угол упругой линии вала в опоре (в радианах) выбирают равным минимальному диаметральному зазору в подшипнике, деленному на длину подшипника. Эти расчеты не могут считаться достаточно обоснованными, так как контактные деформации и упругие углы поворота корпусов соизмеримы с зазорами в подшипниках.  [c.331]

Опорами ротора насоса являются подшипники скольжения с принудительной смазкой (рис. 9.13). Корпус 1 и крышки подшипников 2 чугунные, вкладыши 5 стальные с баббитовой заливкой. Вкладыши с высокой частотой вращения насосов имеют сферическую посадку в корпусе, а насосов с частотой вращения до 3000 об/мин — цилиндрическую. Положение подшипников на заводе-изготовителе фиксируется двумя призон-штифтами 3. Масло подается с двух сторон к середине вкладыша и сливается по краям. Для контроля температуры вкладышей в корпусе подшипника установлены термометры сопротивления 6. Наличие смазки контролируется через смотровое окно 4.  [c.238]

Опорами ротора служат подшипники скольжения. 8 с принудительной смазкой. Корпуса подшипников крепятся к корпусам концевых уплотнений. Вкладыши в корпусе подшипника установлены по сферической расточке для -обеспечения самоустансвки вкладышей в процессе работы насоса и исключения ручной цригонки рабочей поверхности к шейке вала. Ъ корпусе заднего подшипника установлены датчик 9 электронного указателя осевого перемещения ротора и упорный шарикоподшипник, ограничивающий возможные перемещения ротора при пуске. Внешний корпус опирается на фундаментную раму 10 четырьмя лапами в горизонтальной плоскости, цроходящей через ось насоса. Лапы крепятся к раме восемью дистанционными болтами. Для обеспечения направленного теплового расширения корпуса на входном и нагнетательном пат рубках выполнены вертикальные шпонки, которые входят в пазы специ- альных траверс, зак репленных на фундаментных опорах. В передних лапах предусмотрены две поперечные шпонки.  [c.242]

Следовательно, упругие свойства масляного слоя подшипника скольжения при малой толщине, равной 0,1 величины радиального зазора, выражаются нелинейной характеристикой жесткости, порядок величины приведенной жесткости (0,2 -ь 0,3)-10 кПсм близок к величине жесткости металлоконструкции машины (зубчатого зацепления, опор и т. д.), демпфирующие свойства масляного слоя характеризуются величиной декремента колебаний б = 0,44, т. е. составляют сравнительно большую величину, что в значительной степени определяет слабые виброзащитные свойства масляного слоя как упругой связи. Поэтому в тех случаях, когда предъявляются повышенные требования по вибрациям корпуса механизма, имеющего внутренние источники высокочастотных (выще 500 гц) колебаний, рационально применять упругие вкладыши подшипников с одним рядом упругих элементов для виброизоляции от источников среднечастотных (100—600 гц) колебаний лучше использовать двухрядные упругие вкладыши с металлическими конструкциями упругих элементов — пружин.  [c.80]

Динамическая модель колебательной системы высокоскоростной ультрацентрифуги представлена на рис. 1. Гибкий вал привода ультрацентрифуги нижним своим концом закреплен в роторе электродвигателя, который вращается в жестких подшипниках скольжения корпуса (статора) и не может перемещаться относительно него в поперечном направлении. Кроме того, между валом и корпусом находятся две упругие связи (первая ступень подвески), одна из которых, нижняя (податливая опора) /кесткостью с. неизменно соединяет вал с корпусом, а вторая, верхняя жесткостью Сд (ограничитель амплитуды) включается в работу только при превышении амплитуды колебаний сверх установленной величины. На верхнем конце гибкий вал несет тяжелый массивный ротор, причем точка закрепления ротора на валу не совпадает с его центром масс. В свою очередь, корпус электродвигателя установлен на гибком стержне, образующем вторую ступень подвески. Этот стержень, жесткий относительно продольных перемещений, имеет сравнительно небольшую жесткость на изгиб, равную или соизмеримую с жесткостью вала, и допускает значительные перемещения корпуса в поперечном направлении.  [c.44]


Сегментный радиальный подшипник Nomy. Подшипник представляет собой индивидуальный, аналогичный подшипнику качения комплект, элементы которого не являются взаимозаменяемыми. Подшипник состоит из внутреннего с и наружного Ь колец и вкладышей а. Опоры вкладышей расположены на внутреннем кольце, надеваемом на вал. Вкладыши вращаются относительно наружного кольца вместе с внутренним кольцом. Наружное кольцо, вставляемое в корпус, имеет внутреннюю поверхность, очерченную по сфере. Аналогичную сферическую поверхность имеют и вкладыши. Благодаря сферической форме контактной поверхности вкладышей и наружного кольца внутреннее кольцо имеет возможность самоустановки. Форма вкладышей обеспечивает работу подшипника при любом направлении вращения вала (в противоположность подшипнику по фиг. 265). При перемене направления вращения вала вкладыши меняют свою опору. Наружное кольцо изготовляется из чугуна перлитной структуры, легированного никелем внутреннее кольцо — из термообработанной Нв = ЬЩ хромоникелевой стали. Материал вкладышей — нитрированная сталь Нв = 1000 на поверхности скольжения).  [c.639]

Схема и характеристики экспериментальной установки. Модель роторного механизма (рис. 1) состоит из вала 11, поддерживаемого двумя опорами, которые прикреплены к массивной плите 13, установленной на четырех амортизаторах 14. Вал 11 с деба-лансным диском 12 для регулирования уровня вибраций, создаваемых валом, опирается на подшипники скольжения 2. К подшипникам при помощи гаек 3 крепится якорь электромагнитного вибратора 5, который через кольцевые резиновые амортизаторы 6 связан со втулкой 9. Втулка соединена с фланцем 8 при помощи гаек 10. Статор электромагнитного вибратора 4 крепится к корпусу опоры и имеет круглую магнитную систему, в которой нарезаны в осевом направлении пазы для укладки обмоток. Воздушный зазор между статором и якорем регулируется с помощью винтов 7. Смазка подшипников осуществляется через пресс-масленку 1.  [c.59]

По соображениям производства принято реактивное облопачи-вание турбины. Вал агрегата имеет 6 опор с масляными подшипниками скольжения. Приняты меры для предотвращения контакта гелия рабочего контура со смазочным маслом. Для этого перед подшипниками предусмотрено лабиринтовое уплотнение, в которое подается чистый гелий. В агрегате применены система смазки подшипников компрессоров и турбины и система смазки редуктора и генератора. Они должны быть разделены, так как масло первой системы находится в контакте с гелием, а масло второй системы — в контакте с воздухом. Применение масляного уплотнения практически исключает потери рабочего тела в местах выхода вала из корпуса.  [c.126]

Осевое усилие ротора воспринимается гидропятой 8, расположенной в камере крышки нагнетания 7. Концевые уплотнения 3 ротора - бесконтактные, щелевого типа, с промежуточными отборами и подводом запирающего холодного конденсата. Опорами ротора служат подшипники скольжения 2 с принудительной смазкой. Со стороны свободного конца вала корпуса подшипника выполнен упор ротора. Зубчатая муфта 1 соединяет вал насоса с паровой приводной турбиной мощностью 3400 кВт и частотой вращения 6300 1/мин.  [c.34]

Опорами ротора служат самоустанавливающиеся подшипники качения с консистентной смазкой. Подшипники в корпусе установлены по скользящей посадке. Корпуса подшипников уплотняются резиновыми манжетами. Перед подшипниками на валу установлены водоотбойные кольца. В крупных насосах применяются подшипники скольжения с кольцевой смазкой.  [c.40]

Вал электродвигателя посредством зубчатой муфты соединяется с насосным валом гидромуфты, а вал насоса или редуктора - с турбинным валом 9 гидромуфты. Насосный полуротор 5 и турбинное колесо 6 гидромуфты изготовляются из стальных поковок с приваренными плоскими радиальными лопастями. Насосный ротор на подшипниках скольжения с осевым упором цапфы 8 устанавливается в корпус. Турбинный ротор со своими опорами имеет  [c.80]

Гидродинамические опоры скольжения применяют на высоких частотах вращения при незначительном диапазоне их изменения, преимущественно, в шлифовальных станках. Принцип работы основан на гидродинамическом эффекте, проявляющемся в возникноре-Нии подъемной силы в зазоре между движущимися телами, разделенными слоем жидкости или газа. Сила возрастает с увеличением скорости движения и с уменьшением зазора. Она является равнодействующей давлений масляного клина. Давления распределяются по криволинейному треугольнику со смещением вершины к минимальному зазору между вкладышем и шпинделем (рис. 29). Шпиндель 1 имеет в передней и задней опорах трехклиновые гидродинамические подшипники. Они состоят из бронзовых сегментов (вкладышей) 2, установленных на сферических головках винтов 3, ввинченных в корпус шлифовальной бабки и предназначенных для регулирования зазоров между шейкой шпинделя и сегментом.  [c.47]

Цапфы, работающие в подшипниках скольжения, выполняют цилиндрическими (рис. 1.14, а, 6), коническими (рис. 1.14, в), сферическими (рис. 1.14, г). Основное применение имеют цилиндрические цапфы. Для облегчения сборки и фиксации вала в осевом направлении концевые цапфы делают меньщего, чем у соседнего участка, диаметра. Для разъемного корпуса с целью предотвращения осевых смещений в обоих направлениях возможна цапфа с уступами с двух сторон (рис. 1.14, б). Конические цапфы помимо осевой фиксации вала позволяют регулировать зазоры в подшипниках. Сферические цапфы применяют для разъемных корпусов при необходимости значительных угловых смещений оси вала. Они сложны в изготовлении и имеют ограниченное применение. Цапфу, передающую осевую силу (главным образом в вертикальных валах), называют пятой, а саму опору - подпятником, который может быть выполнен самоустанав-ливающимся (рис. 1.14, д).  [c.28]

Подшипники скольжения бывают с подвижными и неподвижными вкладышами. На рис. 90 показан подшипник с подвижными са-моустанавливающимися вкладышами. Такие вкладыши могут поворачиваться в шаровых опорах корпуса, следуя за изгибом вала и принимая положение, параллельное его шейке. Подшипник с такими вкладышами называется самоустанавливающимся.  [c.145]

Некоторые примеры применения приборных шарикоподшипников показаны на рис. 134. Так, на рис. 134, а изображена установка ротора гироскопа I в крестовине 3 на двух радиальноупорных подшипниках 2 с цилиндрическими цапфами и насыпными шариками. Сама крестовина также установлена в корпусе прибора на двух конических цапфах (винтах). Ротор гироскопа может быть установлен и на специальных скоростных шарикоподшипниках, хорошо работающих при = 900л рад сек (рис. 134, б). Подшипник ролика пишущей машины имеет разъемное внутреннее кольцо, состоящее из двух половинок 4 м 6. Необходимый зазор устанавливается при помощи шайб 5 (рис. 134, в). На рис. 134, г показана опора для вертикальной оси с осевой нагрузкой. Эта опора имеет хвостовик, работающий с трением скольжения. При больших числах оборотов применять ее не рекомендуется. На рис. 134, д приведена конструкция шариковой сферической опоры, которая используется в качестве щупа в пространственных кулачковых механизмах (каноидах). Шаровая опора, позволяющая как вращательное, так и поступательное движение оси 7, показана на рис. 134, е. Ось находится в двух кронштейнах 8, в каждом из которых имеется по четыре винта 9 с шариками.  [c.256]

Шпиндельная коробка (рис. 94) состоит из нормализованных деталей. Основными частями ее являются корпус 4, промежуточная плита 2, задняя плита 1, передняя крышка 5 и верхняя крышка 3. В качестве опор шпинделей часто используют конические роликоподшипники, а при очень малом расстоянии между шпинделями передние опоры выполняют с игольчатыми роликопод-шииникамп или подшипниками скольжения.  [c.166]

Для того чтобы лучше использовать такие положительные свойства прессованной древесины, как свойство самосмазывания, упругость, химическая стойкость, вибростойкость, и реализовать высокую производительность изготовления деталей нз полимеров, Б. И. Купчиновым разработана технология изготовления древесно-пластмассовых подшипников скольжения. Она состоит в том, что древесина в виде брусков облицовывается термопластичной пластмассой методом литья под давлением. У таких изделий самосмазывающиеся материалы на основе древесины образуют поверхность трения, а литьевой материал — корпус. Стендовые испытания таких наборных подшипников р = 25 кгс/см , V = 0,3 м/с) по сравнению со втулочными, пропитанными маслом МС-20, показали в режиме самосмазки при температуре до 160 °С работоспособность в 1,5—2 раза более высокую. Изготовление наружной опоры поверхности подшипника в виде отдельных сегментов с радиусом кривизны меньшим, чем ради с прессового отверстия, позволяет резко увеличить демпфирующие свойства подшипника и компенсировать изменение в полимере при нагреве.  [c.180]

Корпуса и крышки подшипников скольжения обычно отливают из чугуна (при бльших нагрузках — из стали) или делают сварными. Опоры скольжения для восприятия осевых нагрузок (подпятники) обычно объединены в одном общем корпусе с подшипником (рис. 314). Опорная часть подпятника представляет собой кольцо или шайбу с прорезанными по торцу смазочными канавками.  [c.536]


Смотреть страницы где упоминается термин Опоры с подшипниками скольжени в корпус : [c.216]    [c.249]    [c.330]    [c.607]    [c.174]    [c.99]    [c.185]   
Справочник металлиста Т4 (1977) -- [ c.335 ]



ПОИСК



Корпус

Корпуса подшипников скольжения

ОПОРЫ И КОРПУСА

Опоры с подшипниками скольжени

Опоры скольжения

Подшипники Корпуса

Подшипники скольжения



© 2025 Mash-xxl.info Реклама на сайте