Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Титан сплавы с танталом и ниобие

Для изготовления сварных конструкций наряду с нелегированным ниобием находят применение его сплавы с твердорастворным и гетерофазным упрочнением. Ниобий легируют вольфрамом, молибденом, танталом, ванадием, цирконием, титаном, гафнием. Цирконий, гафний, титан упрочняют ниобий не только благодаря растворному механизму, но и за счет образования фаз внедрения.  [c.153]

Рис. 68. Коррозионная стойкость сплавов ниобия с танталом, титаном, цирконием и молибденом в кипящей Н, SO Рис. 68. Коррозионная стойкость сплавов ниобия с танталом, титаном, цирконием и молибденом в кипящей Н, SO

Молибден (как и вольфрам) устойчив в фосфорной кислоте. Поэтому легирование танталом молибдена не влияет на коррозионную стойкость. Сплавы для эксплуатации в соляной кислоте можно выбрать на основании данных, приведенных в табл. 15. В кипящей соляной кислоте с концентрацией до 20% можно эксплуатировать нелегированный ниобий, а при более высокой концентрации кислоты — сплав ниобия с танталом (80- 70 мас.%) Nb + (20- 30 мас.%) Та. Можно применять также сплав Та+ 25 мас.% Ti и Та + 60 мас.% V. Экономически целесообразно легировать ниобий титаном и, возможно, ванадием. При этом, однако, коррозионная стойкость ниобия ухудшается. Сплав на основе ниобия с 10 мас.% Ti (5 мас.% V) имеет коррозионную стойкость на уровне 1 балла в 13-14%-ной НС1, а при 15 мас.% Ti (10 мас.% V) - в 11-13%-ной НС1.  [c.83]

В качестве припоев для пайки тан-тала целесообразно применять прежде всего такие металлы, как титан, ванадий, ниобий и молибден, которые образуют с танталом непрерывный ряд твердых растворов, что позволяет получить высокопрочные и пластичные паяные соединения. Из указанных металлов успешно применяют сплав, содержащий 85 % Ti и 15 % Мо, дающий возможность производить пайку при 1850 °С.  [c.262]

Тугоплавкие металлы и тяжелые сплавы. Из порошков методом восстановления из окислов получают металлы с очень высокой температурой плавления — волы )рам, молибден, тантал, ниобий и др. Сначала в потоке водорода восстанавливаются из окислов чистые металлы, получаемые в виде порошков. Их прессуют в брикеты и нагревают током. Далее производят ковку и прокатку. Все эти операции с вольфрамом и молибденом производят в атмосфере водорода, а с титаном и танталом — в вакууме, так как последние очень сильно поглощают газы при высоких температурах. Если металл предназначен для нитей электроламп, в него добавляют вещество, препятствующее росту зерна при высоких температурах, например окись тория.  [c.488]

Таким образом, торможение анодного процесса ионизации ванадия в растворах серной и соляной кислот достигается при легировании его танталом, ниобием и молибденом. При легировании титаном коррозионная стойкость ванадия в растворах серной и соляной кислот ухудшается. В растворах азотной кислоты, в которых ванадий растворяется с высокими скоростями, путем легирования его ниобием, танталом и в меньшей степени титаном можно значительно замедлить или полностью предотвратить егО коррозию добавка ниобия в количестве 50 вес. % снижает скорость коррозии ванадия при 100° С в 57-ной азотной кислоте на 6 порядков. Предполагается, что защитное действие ниобия и тантала связано с образованием на поверхности сплавов ванадий — ниобий и ванадий — тан-тал пассивирующих пленок типа p -(V,Nb)20s и Р -(У,Та)г05 соответственно.  [c.99]

Сплавы с р-структурой наиболее интенсивно упрочняются железом, хромом, марганцем, в меньшей степени молибденом и слабо ниобием и танталом. В этой же последовательности уменьшаются эффективные параметры размерного несоответствия этих элементов в р-титане (см.табл.6).  [c.80]

Рис, 64, Коррозионная стойкость сплавов ниобия с титаном и танталом (а), ванадием (б), цирконием и молибденом (в) в кипящей НзРО, [52]  [c.70]


Незначительно уменьшает окисление молибдена легирование, чего нельзя сказать о вольфрамовых сплавах из-за трудностей их разработки. Скорость окисления сплавов ниобия с титаном и вольфрамом при температуре 1200° в 100 раз ниже, чем скорость окисления чистого ниобия. Окисная пленка, образующаяся при повышенной температуре на тантале, быстро растворяется в металле, сообщая ему хрупкость. Такое же действие оказывают на тантал азот и водород.  [c.137]

Поскольку насыщение только одним алюминием не обеспечивает необходимых защитных свойств покрытий, особенно на тугоплавких металлах и сплавах, обычно применяют комплексное диффузионное легирование (одновременно или последовательно) алюминием совместно с другими элементами, например кремнием, титаном, ниобием, танталом, хромом. Такие типы модифицированных алюминидных покрытий будут рассмотрены ниже.  [c.268]

В настоящее время для производства режущих инструментов очень широко используются твердые сплавы. Эти инструментальные материалы содержат чрезвычайно твердые и тугоплавкие металлоподобные вещества, называемые карбидами, нитридами, бо-ридами и силицидами. Они представляют собой соединения углерода, азота, бора, кремния с металлами — вольфрамом, титаном, танталом, ниобием, молибденом. Температура плавления карбидов очень высокая в пределах 2000—3800° С, а по твердости они приближаются к самому твердому веществу — алмазу.  [c.11]

Диффузионной сваркой-изготовляют узлы и детали из различных металлов, сплавов и неметаллических материалов. Композиции свариваемых материалов исключительно разнообразны. В результате накопленного опыта можно сделать вывод, что большинство металлов, таких, как никель, медь, титан и их сплавы, а также стали (в том числе и аустенитного класса) обладают хорошей взаимной свариваемостью. То же можно сказать о тугоплавких металлах — молибдене, вольфраме, тантале, ниобии. Хорошо сваривается молибден со сталью, ниобием. Свариваются неметаллические материалы керамика, стекло, кварц, полупроводники, графит, керметы и металлокерамика с металлами. Сварка чугуна со сталью осуществляется по большой поверхности. Свариваются такие разнородные металлы и сплавы, как титан и медь, титан и ковар, титан и константан, титан и молибден, золото и бронза, серебро и коррозионно-стойкая сталь, титан и платина, молибден и ковар, алюминий и ковар. Качественные соединения перечисленных материалов невозможно получить другими методами сварки и пайки.  [c.42]

Коррозионностойкими в этих условиях оказались сплавы наос-нове титана, ниобия, циркония, легированные танталом, молибденом и др. Однако при повышении температуры до 100—110° С коррозия некоторых сплавов несколько повышается (табл. 18.3). Очевидно, присутствие небольших количеств жидкого брома, играющего роль окислителя, оказывает благотворное влияние на коррозионную стойкость титана ВТ 1-1 и его сплава с танталом (сплав 4204). В аналогичных условиях (табл. 18.4, гидролизер, поз. 1), но в отсутствие брома эти сплавы полностью разрушаются. Наиболее стойкими в тех и других условиях оказались сплав 4201 и сплавы на основе ниобия, легированные вольфрамом, танталом, титаном, молибденом и др.  [c.425]

В системах с ограниченной растворимостью образуются связи второго типа. Обратимся к композиту никель — вольфрам. Согласно Хансену и Андерко [14], никелевый сплав с 38% вольфрама находится в равновесии с твердым раствором на основе вольфрама, содержащим малые количества никеля (менее 0,3%). Такое равновесие предполагает равенство химических потенциалов. Этот принцип был использован Петрашеком и др. [33] при разработке сплава на Ni-основе для композита никелевый сплав — вольфрам. Вначале был использован сплав Ni-S0 r-25W. Затем в него были добавлены титан и алюминий. Во второй серии сплавов содержание вольфрама было понижено он был частично заменен другими тугоплавкими металлами ниобием, молибденом и танталом. Совместимость этих сплавов с вольфрамовой проволокой оказалась выше, чем у стандартных жаропрочных сплавов, но все же ниже, чем у сплавов, легированных только вольфрамом. Дальнейшее существенное улучшение, совместимости достигается добавками алюминия и титана, однако механизм влияния этих элементов на совместимость отличен от рассматриваемого здесь регулирования химических потенциалов. По заключению авторов, во избежание существенного уменьшения сечения вольфрамовой проволоки за счет диффузии следует использовать проволоку диаметром 0,38 мм. После выдержки при 1366 К в течение 50 ч глубина проникновения составляла 26 мкм, что соответствует коэффициенту диффузии (2-f-5) -10 ы / . Уменьшением сечения. волокна за счет диффузии можно объяснить более крутой наклон кривых длительной прочности в координатах Ларсена — Миллера для композита по сравнению с проволокой.  [c.132]

Коррозионное растрескивание аустенитных стале й на тепловых электростанциях. Аустенитные стали в условиях работы теплоэнергетических установок (котлов, парогенераторов, реакторных установок) могут подвергаться нескольким видам коррозии под напряжением. Так, нержавеющие стали этого класса, нелигированные титаном, ниобием или танталом, склонны к образованию трещин межкристаллитной коррозии. С металлографической точки зрения, этот вид коррозионного разрущения металлов и сплавов характеризуется образованием начальных трещин и ответвлений от основной трещины по границам зерен. При дальнейщем развитии коррозии этого вида, связанном с появлением концентраторов напряжений, также возможно образование транскристаллитных трещин. Кроме того, аустенитные стали, легированные титаном и ниобием и особенно нелегированные ими, в условиях работы теплоэнергетических установок тоже подвергаются межкристаллитной коррозии. Трещины межкристаллитной и кислотной коррозии под напряжением образуются на участках металла с наибольшими напряжениями и обязательно с той стороны, где волокна металла растянуты. Наиболее характерными признаками такой коррозии являются  [c.340]


В работах, посвященных вопросу влияния легирования на свойства мо либдена, рассмотрены изменения некоторых свойств сплавов на основе мо либдена с небольшими присадками других элементов, изготовленных глав ным образом методом металлокерамики [3, 4, 5, 6]. Установлено, что доба вление даже небольших количеств таких элементов, как Ве, 2г V, ЫЬ, Та, Сг и др., значительно изменяет свойства молибдена повышает ся его твердость, прочность, снижается пластичность, изменяется темпе ратура рекристаллизации сплавов по сравнению с молибденом. Нами иссле довались свойства и микроструктура литых сплавов молибдена с бором кремнием, титаном, ванадием, хромом, цирконием, ниобием, танталом и вольфрамом с содержанием легирующих элементов до 10—20 %, а также сплавы с содержанием алюминия до 0,5 % и с содержанием углерода до 0,2%.  [c.144]

Наиболее перспективными являются ниобиевые сплавы, легированные молибденом, вольфрамом, ванадием, титаном и танталом, образующими с ниобием неограниченные твердые растворы "с добавлением алюминия, хрома, циркония, кремния и бора, которые как в чистом виде, так и в форме мет ылических соединений играют роль упрочнителей.  [c.89]

По коррозионной стойкости Мо значительно превосходит высоконикелевые сплавы и титан. Согласно приведенным выше данным, в Н2 SO4, как и в дрзггих кислотах (НС1, H2SO4), по коррозионной стойкости молибден занимает промежуточное положение между ниобием и танталом (см. рис. 41, 42). Необходимо отметить, что ни различие в химическом составе молибденового сплава, ни технология его изготовления (вакуум-плавлен-ный, спеченный), ни структурное состояние (наклепанный, рекристаллизованный) не влияют на скорость общей коррозии, определяемую весовым методом. В связи с этим все промышленные сшшвы, если их рассматривать как коррозионностойкие, можно объединить под общим названием — молибден. Несмотря на одинаковую скорость общей коррозии,  [c.90]

Добавки металлов IV-a и V-a групп сложным образом влияют на жаростойкость вольфрама (рис. 14.22). Ниобий и тантал улучшают жаростойкость вольфрама при 1000. .. 1460 °С благодаря образованию двойных оксидов и воль-фраматов. Легирование сплавов W—Сг титаном (W — О. .. 14 Сг—О. .. 1,5 Ti) и одновременное легирование вольфрама ниобием (О. .. 13 %), танталом (О. .. 15 и 25. .. 50 %) и молибденом (О. .. 2,5 %) приводит к резкому уменьшению скорости окисления на воздухе при 1200 "С. Минимальная скорость 1 мг-см Ч достигается при легировании вольфрама хромом (8 %) и титаном (1,5 %), Поскольку титан стабилизирует вольфраматы ниобия и тантала, перспективны сплавы систем W—Nb—Ti и W— Та—Ti. Максимальная жаростойкость получена на сплавах W—Сг—Pd (скорость окисления 0,01 и 1,5 мг-см -ч"1 при 1200 и 1400 С для сплава W— 10 Сг—1 Pd), а время до разрушения — 550, 100 и 14 при 1200, 1400 и 1800 °С  [c.431]

Новым металлическим материалом, занимающим видное место в машиностроении, являются титан и сплавы на его основе. Это серебристо-белый металл с температурой плавления 1660° и удельным весом 4,5 г/сж . Технический титан высокой чистоты содержит не более 0,1% примесей (Ре Мп А1 С 51 N1), имеет невысокую прочность, хорошую пластичность, по свойствам приближаясь к чистому железу с углеродом образует очень твердые карбиды титана. Татан удовлетворительно обрабатывается давлением (ковкой, прессованием, прокаткой), сваривается дуговой сваркой в атмосфере защитных газов. Имеет высокую стойкость против коррозии в пресной, морской воде и в некоторых кислотах. Примеси резко повышают прочность, одновременно снижая пластичность титана. Изготовляемый в СССР технический титан, содержащий до 0,5% примесей имеет 6в =55—75 кГ1мм 6 = 20—25%. К к конструкционные материалы Б машиностроении применяются сплавы титана с ванадием, молибденом, хромом, марганцем, вольфрамом, танталом, ниобием, углеродом, алюминием, оловом. Наибольшее применение  [c.191]

Ниобий хорошо сваривается с ванадием (в качестве присадки применяют титан [И]), танталом, сплавами титана, меди, циркония. При сварке ниобия с никелевыми сплавами образуются трещины. Рекомендуется выполпять сварку с применением вставки, например, из палладия [56].  [c.376]

Легирование было бы наиболее желательным способом защиты этих металлов от окисления. В отношении молибдена подобный способ, по-видимому, не применим, так как для этого необходимо ввести слишком много легирующих элементов (например, никеля), и такое легирование снизит как пластичность, так и жаропрочность. Жаростойкость ниобия повышается при. тегировании его титаном, алюминием,хромом вольфрама — ниобием и танталом однако сведений о практическом применении таких жаропрочных сплавов не имеется. На практике, для целей защиты тугоплавких металлов от окисления, пользуются поверхностными покрытиями, в первую очередь, плакированием никель-хромовыми сплавами (для работы не свыше 1100°) и диффузионным силицированием (для работы до 1600°). При силицировании образуется на поверхности изделия из молибдена силицид Мо51. , устойчивый до 1600° С. (При 1800° силицид молибдена плавится). К сожалению, эти силициды хрупки. Возможно применение и гальванических покрытий нике-.тем и хромом. Такие покрытия пластичны, но защищают они от окисления лишь до 1100—1200°С.  [c.347]

В табл. 4.32 приведены результаты, полученные для этих сплавов. Ниобий и тантал образуют непрерывную область твердых растворов, и изменение ф отражает это обстоятельство Ф монотонно возрастает от значения, соответствующего чистому ниобию, до значения, соответствующего чистому танталу. С другой стороны, в системе титан—рений растворимость рения в а-титане хорошая, достигает 50 ат.%, а растворимость титана в рении очень плохая, не выше 0,5%. При 82,5% Не возникает так называемая х-фаза, Т15Ке24. Эти свойства также отражаются на поведении величины ф , которая очень медленно меняется  [c.288]


Смотреть страницы где упоминается термин Титан сплавы с танталом и ниобие : [c.25]    [c.112]    [c.153]    [c.161]    [c.101]   
Теория коррозии и коррозионно-стойкие конструкционные сплавы (1986) -- [ c.243 ]



ПОИСК



Ниобий

Ниобий с танталом

Ниобий сплавы

Ниобит 558, XIV

Структура и свойства сплавов карбид вольфрама-карбид титана-карбнд тантала (ниобия)-кобалът

ТАНТА

Тантал

Тантал сплав с ниобием

Тантал сплавы

Тантал-титан

Титан

Титан и его сплавы

Титан и сплавы титана

Титанит

Титания



© 2025 Mash-xxl.info Реклама на сайте