Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Перспективные материалы по основным видам применений

Для получения суперсплавов с требуемым комплексом механических свойств предпочтение следует отдавать композициям, не обладающим высоким сопротивлением горячей коррозии. Не следует ожидать, что ситуация в будущем изменится, даже если основное внимание будет перенесено на получение мо-нокристаллических суперсплавов. Наиболее перспективным способом повышения сопротивления суперсплавов коррозионному разъеданию является применение покрытий, а также более точное определение возможных механизмов коррозионной деградации, которым должен противостоять материал. Существенно повысить стойкость к горячей коррозии системы суперсплав-покрытие можно за счет выбора такого суперсплава, который обладает наивысшим сопротивлением именно тому виду горячей коррозии, который играет доминирующую роль в данных рабочих условиях. Затем следует выбрать или разработать соответствующее покрытие, повышающее сопротивление системы этому конкретному виду коррозионной деградации.  [c.88]


В табл. 8 обобщены сравнительные данные для композицион-пых материалов, изготовленных с применением основных армирующих волокон. Прочность и жесткость оценены по сравнению со свойствами типичного титанового сплава Ti—6% А1—4% V. В ряде случаев они сравнены с перспективными свойствами, дости-н ение которых предполагается, если будут преодолены производственные трудности. Высокотемпературная удельная прочность относится к 600—1200° F (316—649 С), к этому же температурному интервалу относится характеристика стабильности. Четыре последних армирующих материала — бор и бор, покрытый карбидом кремния, карбид кремния и окись алюминия — располагаются в порядке возрастания плотности и снижения прочности. Однако потенциальная прочность при комнатной температуре у композиционных материалов, изготовленных из первых трех видов волокна, примерно одинакова и оценена одинаковым показателем. Значительно более высокая плотность окиси алюминия (4 г/см ) отрицательно влияет на потенциальную прочность и нсесткость композиционных материалов, изготовленных с этим армирующим волокном.  [c.330]

Монография представляет первую в мировой литературе попытку аналитического рассмотрения современного состояния разработок н применений (включая перспективные) диэлектрических материалов в электронной технике. В ней описаны особые свойства диэлектриков линейные и нелинейные диэлектрические, пьезо-, пиро-, сегнетоэлектрические, сегнетоэластические, электро-, аку-СТО-, нелинейно-оптические, лазерно-генерационные. Рассмотрены корреляции между мерой выраженности конкретных свойств и обусловливающими их особенностями структуры. Приведены характеристики основных типов используемых и предложенных устройств, включая интегральные и полифункциональные. Предложена система критериев качества рассматриваемых материалов применительно к видам их применений. Подробно протабулированы характеристики используемых и вновь предлагаемых материалов, а также типовых ИЭТ и ИФЭ с функциональными элементами из диэлектрических материалов с особыми свойствами. Проведен анализ перспектив развития отдельных направлений, сформулированы прогнозные перечни новых материалов. Книга может быть использована как современное справочное руководство при выборе материала для решения ряда прикладных задач.  [c.2]


Смотреть страницы где упоминается термин Перспективные материалы по основным видам применений : [c.175]    [c.181]    [c.76]    [c.178]    [c.86]   
Смотреть главы в:

Диэлектрики Основные свойства и применения в электронике  -> Перспективные материалы по основным видам применений



ПОИСК



547 — Виды и применение

633 — Виды Материалы

Виды основные

Материал основной

Перспективные виды



© 2025 Mash-xxl.info Реклама на сайте