Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Исследование критических плотностей тепловых потоков

Исследование критических плотностей тепловых потоков  [c.133]

Многие исследователи (их в настоящее время, по-видимому, большинство) рассматривают кризис теплообмена при кипении ак явление, имеющее в своей основе гидродинамическую природу. В пользу этой концепции говорят теоретические исследования и опытные данные ряда авторов, в соответствии с которыми резкое ухудшение теплоотдачи наступает еще до слияния паровых пузырей. При достижении критической плотности теплового потока под воздействием динамического напора образующегося пара пленки жидкости между пузырями теряют устойчивость и жидкая фаза вытесняется из пристенного слоя. Между греющей стенкой и жидкостью образуется паровая подушка.  [c.270]


Экспериментальные исследования показали, что при одинаковых параметрах при двухстороннем теплоподводе величина критической плотности теплового потока (д кр) на 20—30% выше, чем при одностороннем ( кр). С уменьшением давления различие в способе обогрева становится меньше. Влияние двухстороннего обогрева учитывается с помощью поправок к основной расчетной зависимости. Аналогично характеру зависимостей для труб при д-о < 0 увеличение массовой скорости способствует росту / р, а при х,, > 0 его уменьшению (здесь Хц — паросодержание, соответствующее началу дисперсно-кольцевого режима). Влияние диаметра внутренней поверхности кольцевого зазора 1 и ширины канала или эквивалентного диаметра неоднозначно.  [c.77]

Для обеспечения устойчивого поверхностного кипения необходимо создать условия, исключающие кризис теплообмена первого рода (переход к пленочному кипению). Заметим, что при температуре конденсации ниже 400 К в прямом цикле ПТУ возникновение кризиса теплообмена в поверхностном конденсаторе не вызывает термического разложения ОРТ, но существенно снижает интенсивность теплопередачи. Экспериментальные исследования [35, 91, 871 показали близость физической картины возникновения и развития кризиса в пучках стержней и внутри труб. Вследствие этого влияние давления, массовой скорости и степени недогрева на критическую плотность теплового потока в пучках стержней <7кр и в прямых трубах оказалось одинаковым [91, 97]. Однако закономерности протекания кризиса поверхностного кипения в пучках стержней имеют особенности. Так, для труб следует учитывать уменьшение с ростом диаметра [801. В то же время в опытах [91 1 с пучками стержней влияния диаметра стержня в исследованном ими интервале диаметров на обнаружено не было. Экспериментально установлено [91, 97], что число стержней в пучке и их относительный шаг в трубной решетке не оказывают влияния на величину Однако в работе [97 ] отмечается, что при зазорах между стержнями в решетке менее 0,002 м наблюдается ее резкое снижение.  [c.154]

Теоретические основы испарительного охлаждения разработаны в результате исследований процессов кипения, парообразования и гидродинамики двухфазной среды. Тепло, отводимое в охлаждающую жидкость, расходуется на нагрев ее до температуры насыщения и парообразования. Один кг воды при испарительном охлаждении отбирает 2500 кДж/кг тепла, тогда как при водяном охлаждении < 250 кДж/кг. Это является основной причиной снижения расхода хладагента. Различают две формы кипения пузырьковое и пленочное, зависящие от плотности теплового потока. Плотность теплового потока, при которой происходит переход от пузырькового режима кипения к пленочному, называется критической (ч р)- Повышение давления и увеличение скорости движения хладагента увеличивают значение критической плотности теплового потока. Однако с увеличением давления > 10 МПа наступает обратный эффект.  [c.114]

На протяжении последних десятилетий в Советском Союзе и за рубежом весьма интенсивно ведутся исследования кризиса теплообмена первого рода, и к настоящему времени накоплен огромный опытный материал по плотностям критических тепловых потоков при кипении в круглых трубах и в кольцевых каналах. Анализ опубликованных в мировой литературе экспериментальных данных по кризису теплообмена в круглых трубах и отбор наиболее надежных из них был впервые выполнен авторами работы [48], В результате были составлены скелетные таблицы значений кри [48]. В основу анализа положена так называемая локальная гипотеза о кризисе теплообмена первого рода, в соответствии с которой  [c.285]


Трудность осуществления пленочного режима кипения при электрическом обогреве состоит в резком повышении температуры поверхности при переходе от ядерного кипения, что вызывает пережог рабочего элемента, если для его изготовления не применяются специальные тугоплавкие материалы. После осуш,ествления указанных режимов кипения тем или иным способом опыты проводятся в обратном направлении. Для этого производится постепенное снижение теплового потока до тех пор, пока не произойдет переход пленочного режима кипения в ядерный. Величина теплового потока, при котором имеет место обратный переход пленочного режима в ядерный, принимается за вторую плотность критического теплового потока. При этом измерения ведутся теми же методами и средствами, какие применяются для исследования других режимов кипения. Трудности осуществления пленочного режима кипения до некоторой степени обходятся в работе [Л. 7]. В ней для получения пленочного режима применяются относительно невысокие значения тепловых потоков и температур стенки. Кроме того, не требуется проходить первый кризис кипения. С этой целью опытная труба 2  [c.247]

В ч. 1 изложены теоретические основы гидравлики закрученного цилиндрического течения жидкости. Такая форма движения теплоносителя может быть организована, например, в трубчатом твзле или во внутренней полости втулочного ТВ зла. двустороннего охлаждения в целях повышения критических плотностей тепловых потоков. Ниже изложены результаты исследования критических плотностей тепловых потоков и гидравлического сопротивления при закрученном цилиндрическом движе-НИИ теплоносителя в трубах, т. е. основных характеристик ТВС, используемых в теплогидравлических расчетах сборок твзлов ядерных реакторов.  [c.128]

В [103, 104] представлены результац>1 исследований, вьшолненных фирмами SNE MA (Франция) и AEG (ФРГ) по интенсификации теплообмена в каналах водяных кипящих ядерных реакторов. Действие скрученных лент исследовалось как в цилиндрической трубе, так и на 4-стерж-невом пучке с закрученными лентами, установленными между стержнями по всей обогреваемой их длине, равной 1,1 м. Стержни диаметром 10 мм располагались с шагом 15 мм. Эксперименты проводились при давлении 6,85 МПа, массовых скоростях потока 600, 1000 и 2000 кг/(м -с). Результаты экспериментов представлены на рис. 8.2, Как видно из рисунка, критическая плотность теплового потока выше в закрученном потоке по сравнению с незакрученным потоком. Причем с ростом скорости потока теплоносителя эффект увеличения возрастает.  [c.146]

Многочисленные экспериментальные данные по исследованию теплоотдачи, гидравлического сопротивления и критической плотности теплового потока охватывают широкий диапазон изменения всех определяюпхих параметров. Однако до настоящего времени не разработана общая теория, которая удовлетворительно описывала, бы совокупность рассматриваемых явлений и давала бы возможность аналитически подойти к решению задачи. Расчетные соотношения можно получить, применяя методы подобия процессов. В этом направлении выполнен ряд работ, но, как правило, полученные соотношения очень сложны, содержат несколько постоянных (до пяти) и. что самое главное, часто плохо согласуются с опытными данными. Кроме того, ни одна из известных работ не дает возможности получить обобщенные зависимости для теплообмена, гидравлического сопротивления и критической тепловой нагрузки исходя из единой системы безразмерных переменных.  [c.52]

Основные опыты по исследованию гидравлического сопротивления в области конвективного теплообмена без кипения и при кипении проведены для канала прямоугольного профиля из латуни ЛС-59 с внутренними размерами 1,8 X 3,6 млг и канала из стали 1Х18Н9Т с внутренними размерами 1,5 X X 3,0 мм при охлаждении их дистиллированной и дегазированной водой в условиях равномерного и неравномерного обогрева по периметру канала. Участок, на котором происходило основное тепловыделение, составлял 16,7—100%. Исследование закономерностей гидравлического сопротивления прямоугольных каналов проведено при следующих параметрах давлении 0,98 2,45 4,9 и 9,8 Мн/м массовых скоростях (7000, 10 ООО, 14 000, 20 000, 28 ООО и 40 ООО) кг1м -сек средних недогревах до температуры насыщения 50, 100 и 150 К пределах изменения плотности теплового потока от О до 0,8—0,9 критического значения тепловой нагрузки.  [c.45]

Для растворов нелетучих веществ характер зависимости [,pi от концентрации несколько иной. Из рис. 13.20 видно, что при кипении растворов практически во всем исследованном диапазоне изменения концентрации (при с>3-ь5%) плотность критического теплового потока уменьшается с ростом с. Исключением являются опытные данные авторов работы [211] для растворов NaOH.  [c.368]


Смотреть страницы где упоминается термин Исследование критических плотностей тепловых потоков : [c.128]    [c.382]    [c.327]    [c.154]    [c.266]    [c.275]    [c.288]   
Смотреть главы в:

Вопросы механики вращающихся потоков и интенсификация теплообмена в ЯЭУ  -> Исследование критических плотностей тепловых потоков



ПОИСК



Критический тепловой поток

Плотность критическая

Плотность потока

Поток тепла

Поток тепла, его плотность

Тепловой поток

Тепловой поток — Плотность



© 2025 Mash-xxl.info Реклама на сайте