Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Обратные связи систем управления

ОБРАТНЫЕ СВЯЗИ СИСТЕМ УПРАВЛЕНИЯ  [c.136]

ВИДЫ и ХАРАКТЕРИСТИКА СИСТЕМ ОБРАТНОЙ СВЯЗИ ПРИ УПРАВЛЕНИИ ПРИВОДАМИ ПОДАЧ В СТАНКАХ С ЧПУ  [c.789]

Наиболее эффективным способом устранения атмосферных искажений лазерных пучков является адаптивное управление амплитудно-фазовым распределением поля на излучающей апертуре с использованием оптической обратной связи. Это управление реализуется с помощью оптических систем, функционирующих по алгоритмам и методам когерентной оптической адаптивной техники. Существенной чертой таких систем является изменение во времени их параметров (а возможно, и алгоритма управления) под воздействием измеряемой информации о состоянии среды и распространяющегося в ней излучения.  [c.96]


Для расширения сферы применения и создания условий для более эффективной эксплуатации станков с программным управлением разработан комплекс стандартов на основные элементы систем ЧПУ. Эти стандарты регламентируют параметры программоносителей, датчиков обратной связи, систем разработки и записи программ с помощью ЭВМ.  [c.130]

Промышленные роботы, используемые для выполнения перегрузочных операций, оснащаются системами программного управления. Технические характеристики устройств управления типа УЦМ и УПМ приведены в табл. 8.2. К основным функциям систем программного управления относятся ввод и запоминание программы, подача команд на перемещение рабочих органов, контроль выполнения команд. В управляющих устройствах роботов применяются различные принципы построения схем управления цикловой, позиционный, комбинированный, контурный. При цикловом управлении команды задаются числовым устройством и контролируются работой упоров и конечных переключателей. Позиционное управление предусматривает сравнение положения звеньев робота на каждой позиции с заданной программой с помощью системы датчиков обратной связи. Комбинированное управление должно обеспечивать непрерывную отработку координат траекторий перемещения звеньев,  [c.145]

Системы автоматического регулирования являются частным видом систем автоматического управления с обратной связью, и их задачей является поддержание обобщенного параметра качества на определенном заданном уровне. Задачей системы управления с обратной связью является управление отдельными выходными параметрами в соответствии с их заданными значениями.  [c.437]

Наиболее распространенным и удобным устройством для диалоговых систем проектирования является экранный пульт (дисплей), связанный с каким-либо устройством документирования. Дисплеи снабжены устройствами обратной связи в виде следящего перекрестия и светового пера, а также функциональной клавиатурой, позволяющей оперировать как с алфавитно-цифровой информацией, так и с графическими изображениями. Поэтому в состав комплексов технических средств САПР для организации диалогового взаимодействия включают мини- или микро-ЭВМ, обеспечивающие управление работой комплекса и реализацию функциональных программ обработки графической информации, устройства вывода п автоматического н полуавтоматического ввода графической информации (кодировщики) и устройства оперативного графического взаимодействия разработчика с ЭВМ (дисплеи).  [c.375]

При разработке конструкции летательных аппаратов и систем управления ими следует учитывать противоречивый характер требований повышения устойчивости движения и обеспечения управляемости. Придание устойчивости обеспечивает устранение возможных нарушений заданного режима движения летательного аппарата, в то время как управляемость связана с обратным — возможностью изменения этого режима.  [c.50]

Основной задачей информационных систем о надежности изделий является анализ данных о надежности и определение тенденций в изменении надежности основных типов машин, оценка эффективности мероприятий по повышению надежности отдельных узлов, разработка рекомендаций по использованию оправдавших себя узлов и агрегатов в новых образцах машин, систематизация данных по надежности стандартных и унифицированных узлов, применяемых в различных машинах. Таким образом, данная система играет роль канала обратной связи для регулирования процесса управления качеством и надежностью в отрасли. Обычно в структуре такой системы предусмотрены подразделения, которые по специально разработанной методике собирают информацию о надежности изделий и в закодированном виде передают в информационный центр, где производится ее хранение и обработка на ЭВМ. Первичной информацией о надежности служат обычно карточки отказов (повреждений), которые позволяют выявить основные причины и последствия возникших повреждений, оценить близость изделия к отказу (если он не произошел), сравнить фактические показатели надежности с регламентированными.  [c.408]


В Качестве примеров таких систем у станков-автоматов можно указать в первую очередь на обратную связь в станках с программным управлением, которая компенсирует влияние зазоров, деформаций, различных случайных воздействий на правильность соблюдения заданного закона движения рабочего органа станка.  [c.461]

Аналоговые системы управления задают перемещение рабочего органа в виде изменения напряжения электрического тока. При этом различают две разновидности аналоговых систем 1) когда за основу принято изменение напряжения по амплитуде, т. е. моделирование перемещений производится изменением амплитуды напряжения 2) когда за основу принят сдвиг фаз напряжения, не изменяющегося по амплитуде и частоте, т. е. моделирование перемещений производится изменением фазы напряжения. Обе разновидности аналоговых систем относятся к замкнутым системам их работа основана на сравнении заданного напряжения с напряжением или сдвигом фаз, вырабатываемым датчиком обратной связи.  [c.192]

Кроме рассмотренных импульсных и аналоговых систем, находят применение и системы, основанные на их комбинации. В импульсно-следящих системах, например, сравнивающим устройством является реверсивный счетчик, куда поступают импульсы от считывающего устройства программы и от датчика обратной связи. Разность импульсов с помощью специального дешифратора преобразуется в аналоговый сигнал, который после усиления используется для управления исполнительным двигателем. В импульсно-фазовых системах управление перемещением производится также по аналоговому сигналу, но он уже вырабатывается на основе сравнения фаз задающего и отработанного напряжения. Получили распространение также системы, в которых датчик обратной связи преобразует величину перемещения в специальный код. Этот код в сравнивающем узле сопоставляется с кодом запрограммированного перемещения (оно задается в абсолютных координатах). Когда код датчика— аналогово-кодового преобразователя — совпадает с кодом заданной координаты, производится отключение исполнительного двигателя и перемещение рабочего органа станка прекращается. Системы такого рода называют кодовыми системами или системами на схемах совпадения. В них применяется абсолютная система отсчета координат.  [c.193]

Измерительные устройства станков с ЧПУ предназначены для получения информации о действительном положении рабочего органа, усиления и преобразования ее и передачи в систему управления станком. Они включают в себя датчик обратной связи, механизм  [c.193]

В последнее время работы в области магнитных аналоговых элементов направлены на создание высоконадежного комплекса быстродействующих магнитных решающих элементов и аналоговых запоминающих устройств для систем автоматического управления, в том числе для самонастраивающихся и самообучающихся систем. Предложены новые принципы построения магнитных интегрирующих усилителей без использования накопительных конденсаторов, в том числе интеграторов, практически не имеющих дрейфа выходного напряжения, что достигается образованием в обмотке сердечника сигнала обратной связи, пропорционального производной выходного напряжения. Разработаны аналоговые запоминающие устройства с высокой точностью и неограниченным сроком хранения информации на базе разветвленных магнитных сердечников с прямоугольной петлей гистерезиса. Магнитные аналоговые запоминающие устройства позволяют создать интеграторы, практически не имеющие дрейфа выходного напряжения, и устройства для дифференцирования медленно изменяющихся сигналов.  [c.265]

Адаптивные системы активной амортизации. Адаптивными называются такие системы активной амортизации, параметры которых (амплитудные и фазовые характеристики обратных связей) могут изменяться в процессе работы таким образом, чтобы обеспечить минимум передачи вибраций от машины в фундамент и прилегающие конструкции. На рис. 7.23 в качестве примера приведены две схемы адаптивных систем активной амортизации. Помимо элементов, составляющих схему активной амортизации на рис. 7.21, а, в них включены дополнительные блоки — оптимизатор 9 и источник управляющих сигналов 10. Оптимизатор — принципиально новое функциональное устройство, отличающее адаптивные схемы управления  [c.243]

Общей чертой всех систем позиционного и контурного управления движением машин с обратными связями является получение информации о положении и скорости в точках наблюдения и использование этой информации для соответствующей коррекции законов движения. В системах контурного управления нолу-чение информации о фазовых координатах машины и управление  [c.118]

Ограничения эффективности, связанные со свойствами механической части машины, могут быть ослаблены или даже полностью устранены методами, известными из теории автоматического регулирования введением корректирующих звеньев в цепь обратной связи или использованием многоконтурных систем управления. Остановимся более подробно на последнем методе применительно к системе, схема которой представлена на рис. 47.  [c.138]

Изложены методы инженерных расчетов и обоснований при решении проектноконструкторских задач на уровне автоматизированных систем машин для массового и серийного производства. Особое внимание уделено сравнительному анализу и выбору оптимальных структурно-компоновочных вариантов систем машин на этапе технического предложения, расчету и проектированию систем автоматического управления, методам реализации обратной связи — от эксплуатации к последующему проектированию.  [c.2]


При автоматизации мелкосерийного производства, когда выпускаемые изделия быстро меняются, используют станки, оснащенные системами ЧПУ. Основными элементами систем (рис. 5.2) являются управляющее устройство (УУ), привод подач (ПП) и рабочий орган станка (РО). Функцией управляющего устройства является формирование сигнала программы и преобразование его в сигнал и (s), который управляет приводом подач. Привод обеспечивает перемещение рабочего органа по координате X. В процессе обработки детали может осуществляться контроль за перемещением X (s) или за качеством обработки k (s). Если система программного управления незамкнута, то ее структурная схема (рис. 5.3, а) не включает обратные связи по регулируемым параметрам. Передаточная функция такой системы определяется через произведение передаточных функций устройств, входящих в систему  [c.104]

При рассмотрении замкнутой системы ЧПУ, управляющей перемещением заготовки или инструмента (рис. 5.4), можно выделить следующие основные ее элементы блок задания программы (Я), электронный усилитель (ЭУ), корректирующее устройство (КУ), датчик обратной связи Д) и систему СПИД. Поскольку система ЧПУ управляет несколькими движениями, то переменные сигналы являются векторами. Например, для трехмерной системы управления сигнал управления U = ( i, Ug), сигнал ошибки е (б , е , вз), сигнал обратной связи Uq = (uoi. 02. оз)> сигнал помехи /2. fa), перемещение рабочего органа станка X = xi, х , Хз).  [c.105]

Особенностью систем управления станками является их многомерность. Вектор сигнала программы U vi, v ,. ... и ) имеет размерность п, равную числу координат, по которым управляется система СПИД. Размерность вектора Uq (woi> 02. . поступающего с УОС, равна т. При п = т система управления по всем управляющим координатам замкнута главной обратной связью, в случае m < п по некоторым координатам система разомкнута в смысле главной обратной связи.  [c.128]

Для замкнутых систем управление осуществляется по отклонению е = V — Vo, которое формируют устройства, вычисляющие рассогласование между сигналами программы и главной обратной связи.  [c.128]

Рис. 6,5. Варианты систем управления с обратной связью Рис. 6,5. Варианты систем управления с обратной связью
Другим способом, позволяющим снизить искажения формы траектории, является введение в систему управления обратной связи по скорости. Действительно, система управления, охваченная обратной связью только по положению, дает большую погрешность при отработке скоростной составляющей командной информации. Эта ошибка и составляет в динамике величину х (t). Как известно, обратная связь по какому-либо параметру позволяет уменьшить его ошибку. Уменьшение скоростной ошибки значительно снижает погрешность траектории при той же скорости перемещения, а иногда и увеличивает ее без потери точности. Схема управления для этого случая показана на рис. 6.5, б. Здесь (0 у (0 (О —скоростные составляющие соответственно командной информации, информации обратной связи и информации ошибки (рассогласования). Такая система управления сложнее и дороже замкнутой только по положению в ней усложнено устройство сравнения и необходимо применение датчика обратной связи по скорости. Поэтому такие системы применяют только в особо точных станках, обрабатывающих ответственные детали.  [c.142]

Как указывалось, отсутствие внешней обратной связи значительно упростило и удешевило привод и систему управления. Наличие пружин на торцах золотника позволяет получить линейную характеристику управления у = k(f, где у — смещение золотника ф — угол поворота шагового двигателя ШД).  [c.163]

Созрели предпосылки для перехода к третьей, более высокой ступени — реализации обратной связи от эксплуатации к последующему проектированию. Внедрение принципиально новых нетрадиционных технических решений (систем программного и прямого цифрового управления от ЭВМ, промышленных роботов-манипуляторов, автоматических систем машин не только для массового, но и серийного производства, новых технологических методов и процессов, конструкций и компоновки машин) требует при комплексной автоматизации поиска оптимального сочетания новизны и преемственности, обоснованности технических и экономических предпосылок применения технических решений для данного производства.  [c.168]

При число-импульсной шаговой системе, работающей только на основе задающей информации без использования системы обратной связи, система управления общим автоматическим циклом является центральной. При других системах цифрового программного управления однокоординатными г1еремещениями переход от одного этапа цикла к другому происходит по поступлении сигнала об окончании предыдущего этапа цикла, что характерно для децентрализованной системы управления. В качестве примера рассмотрим децентрализованную систему цифрового программного управления токарным станком (рис. П1.88).  [c.564]

В качестве наиболее общих исходных принципов теории управления движением и построения соответствующих систем управления далее рассматриваются принцип обратной связи, принципы управлення начальиылг, текущим конечным состоянием объекта управления, а также лриици декомпозиции, включающий такие варианты его реализации, как принцип управления по схеме "наведение-стабилизация" и принцип иезависимого (развязаииого) управлення.  [c.22]

На рис. 30.20 показана одна из возможных систем управления. Эта система называется обратимой следящей системой. В этой система обратная связь не то. ько информирует оператора о величине сил, /лл гстпующих на исполнительный орган, по и соотЕетствуюпиш образо.м изменяет полой . и не задающих механизмов. Эта система называется двухсторозтсн или обратимой, так как ее следяш,ий привод выполнен так, что в нем можно по  [c.627]

Для ипыскания новых путей управлении качеством необходимо прежде всего решить задачу нахоисдения на основании установленных виутренких детерминированных связей между процессами, протекающими в системе энергия — вещество наиболее характеристические параметры (обратные связи), позволяющие в максимальной степени эффективно и спонтанно привести систему в стабильное состояние, новое качество, удовлетворяющее поставленным целям.  [c.110]

К этому времени отечественные машиностроительные заводы освоили аппаратуру и комплектные устройства для автоматического управления — так называемые магнитные станции, обеспечивавшие автоматическое управление (рис. 35). Для регулирования скоростей шире стала использоваться система генератор — двигатель и наметились новые принцишл построения непрерывного управления электроприводами, основанные на использовании замкнутых цепей и обратных связей с применением электромашинных и электронноионных регуляторов. В предвоенные годы началось промышленное использование электромашинных систем управления.  [c.115]


В 40-х и начале 50-х годов теоретические исследования по автоматическому регулированию были сосредоточены в Институте автоматики и телемеханики АН СССР, где большая группа талантливой научной молодежи сплотилась вокруг академика А. А. Андронова (1901—1952 гг.), выдающегося физика и одного из основателей нелинейной механики. Многие ученые, работавшие в этом институте и других организациях и получившие мировое признание, выросли и воспитались на острых научных дискуссиях, характерных для деятельности семинара, организованного институтом. Здесь получили развитие частотные методы, было положено начало работам по теории импульсных систем и создан теоретический базис для постепенного перехода от теории обычного замкнутого контура с отрицательной обратной связью к современной теории сложных систем айтоматического управления, к теории оптимальных систем [52].  [c.248]

Развивалась также теория детермированных дискретных оптимальных систем — как импульсных, так и релейно-импульсных. Однако для решения нелинейных задач, относящихся к замкнутым системам со случайными помехами в их цепях — как в прямом тракте системы, так и в цепи обратной связи, необходимо учитывать неполноту информации об объекте и его характеристиках и случайные шумы. Все это потребовало привлечения новых математических средств. Такими средствами явились метод динамического программирования Р. Веллмана, нашедший за последние годы успешное применение в теории оптимальных систем и теории статистических решений. В результате оказалось возможным сформулировать новый круг проблем, а также найти общий рецепт решения задач и решить некоторые из них. Значительная часть этих работ была посвящена теории дуального управления, отражающей тот факт, что в общем случае управляющее устройство в автоматической системе решает две тесно связанные, но различные по характеру задачи первая задача — это задача изучения объекта, вторая — задача приведения объекта к требуемому состоянию. Теория дуального управления дает возможность получить оптимальную стратегию управляющего устройства для систем весьма общего типа [48].  [c.272]

Отметим, что проектирование систем активной амортизации сопряжено с использованием достаточно мощных источников энергии и синтезом цепей управления, реализующих нужные амплитудные и фазовые характеристики- Реальные датчики сил или перемещений (скоростей, ускорений), усилители и вибраторы являются сложными колебательными системами со многими резонансами. Поскольку при переходе через резонансную частоту сдвиг фаз между силой и смещением изменяется на величину зт, фазово-частотные характеристики реальных систем амортизации являются сложными и трудно контролируемыми функциями, изменяющимися в интервале [О, 2я]. В практических условиях сделать их близкими к требуемым характеристикам удается только в ограниченной полосе частот. Вне этой полосы могут иметь место нежелательные фазовые соотношения, приводящие к. увеличению виброактивности машины it дaн e к самовозбуждению всей системы. Пусть, например, в соотношении (7.35) коэффициент Kj принимает положительное значение. Это значит, что на некоторых частотах фазовая характеристика цепей обратной связи принимает значение О или 2п. На этих частотах сила /а оказывается в фазе с силой /2, общая сила /ф, действующая на фундамент, увеличивается и виброизоляция становится отрицательной. Вместо отрицательной обратной связи на этих частотах имеет место по-лолштельная обратная связь. Если при этом коэффициент Kj бу-  [c.242]

Рассмотрим сначала машину, состоящую из двигателя и ме-хаиической части, схема которой показана на рис. 19. При отсутствии управления с обратными связями (это будет предполагаться во всех примерах, рассматриваемых в этом параграфе) для получения полной системы уравнений движения необходимо систему уравнений (3.7) или (3.9) донолнить характеристикой двигателя. Будем сначала считать двигатель идеальным, полагая, что его выходное звено (ротор) осуществляет заданное программное движение qn(t), связанное с управлением Uo(t) соотношением = = f uo). В этом случае динамическая ошибка tl)o(f) тождественно равна пулю, а первое из уравнений (3.9) может быть использовано после интегрирования остальных уравнений для оиределе-ния момента МцШ  [c.65]

Важной особенностью рассмотренных пассивных систем стабилизации является их безынерционность запаздывание силового управления, формируемого обратной связью, относительно сигнала  [c.112]

Обобщенная схема замкнутых систем управления, представленная на рис. 5.1, предназначена для управления основными или вспомогательными движениями рабочего органа станка. Она включает устройства задающее (ЗУ), сравнивающее или преобразующее (Пр), исполнительное (ИУ) и обратной связи (УОС). При отсут-  [c.101]

В системах программного управления станков и автоматических линий широко используют следящие приводы подач — электрические или злектрогидравлические. Методика расчета этих приводов базируется на общей теории следящих систем. Задачей расчета является определение корректирующих устройств и обратных связей, которые обеспечивают желаемые динамические характеристики. Если расчет производится с помощью логарифмических частотных характеристик (ЛЧХ), то желаемыми является амплитудная (со) и фазовая ф (ш) характеристики. В этом случае амплитудная ЛЧХ последовательного корректирующего устройства Lh (ю) определяется через2 -ж[( ) и амплитудно-частотную ЛЧХ неизменяемой части следящего привода L (со)  [c.103]

Исследования и статистическое моделирование работы автоматических линий массового производства позволили определить типовые характеристики по качеству изделий, быстродействию, надежности основных конструктивных элементов, где имеются резервы повышения производительности и эффективности. Благодаря качественным формам обратной связи от эксплуатации к проектированию и исследованиям этой связи как количественной формы, для наиболее распространенных типов линий сложились типовые методы и процессы обработки, рациональные структурные и компоновочные решения линий в целом, транспортнозагрузочных систем, систем управления. Поэтому сравнение характеристик надежности механизмов одинакового целевого назначения позволяет выбрать наиболее удачные конструктивные решения и принципиальные схемы, особенно для типовых механизмов рабочих и холостых ходов (силовых головок, транспортеров, механизмов зажима и фиксации, устройств управления, контроля, блокировки и т. д.). Сравнивая фактический уровень надежности с перспективным, можно определить пригодность тех или иных решений, а сравнивая фактические характеристики с ожидаемыми, можно оценить надежность применяемых методов прогнозирования надежности. Наконец, только эксплуатационные исследования дают достоверные значения показателей надежности, исходя из которых решаются задачи выбора числа позиций  [c.193]


Смотреть страницы где упоминается термин Обратные связи систем управления : [c.196]    [c.204]    [c.137]    [c.18]    [c.125]    [c.104]    [c.113]    [c.139]    [c.280]    [c.443]   
Смотреть главы в:

Комплексная автоматизация производства  -> Обратные связи систем управления



ПОИСК



Обратная связь

Система обратной связи

Система со связями

Управление с обратными связями



© 2025 Mash-xxl.info Реклама на сайте