Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент трения и износоустойчивость фрикционной пары

КОЭФФИЦИЕНТ ТРЕНИЯ И ИЗНОСОУСТОЙЧИВОСТЬ ФРИКЦИОННОЙ ПАРЫ  [c.546]

Исследованием свойств фрикционных материалов в различных условиях использования занималось большое количество исследователей, однако вследствие большого разнообразия состава накладок, различия в технологии их изготовления и в диапазоне изменения различных факторов, влияющих на фрикционные свойства, а также различия в принятой исследователями методике испытаний до сих пор не установлены общие закономерности изменения коэффициента трения и износоустойчивости фрикционных материалов. Задача изучения свойств фрикционной пары и подбора фрикционных материалов для определенных условий работы осложняется тем обстоятельством, что коэффициент трения и износоустойчивость пары являются комплексной характеристикой, зависящей от свойств обоих трущихся тел, от режима работы и конструкции тормозного узла. Одна и та же пара трения при использовании ее в различных машинах и различных условиях будет иметь различные значения коэффициента трения и износо-546  [c.546]


Основной задачей в области создания высокоэффективных типов фрикционных материалов остается создание материала со стабильным коэффициентом трения и высокой износоустойчивостью при работе в широких диапазонах температур. По-видимому, такими материалами все же будут металлокерамические накладки, не имеющие в своем составе органических веществ и, следовательно, мало изменяющие значение коэффициента трения при нагреве, а также обладающие относительно высокой износоустойчивостью. Наиболее вероятным путем создания фрикционных материалов для особо напряженных условий работы явится сочетание металлического жаростойкого компонента (например, нихрома или нержавеющей стали) и тугоплавких карбидов, но надо иметь в виду, что в этом случае применение чугунного контртела будет нецелесообразным из-за его недостаточной износоустойчивости. Высокая теплопроводность таких материалов позволит существенно уменьшить тепловой удар, возникающий на поверхности трения при интенсивной работе. Удовлетворительное решение проблемы создания надежной фрикционной пары современных высоконагруженных тормозов возможно только в случаях применения более теплостойких материалов, при одновременной разработке конструкций тормозов, обеспечивающих образование более низких температур нагрева поверхности трения.  [c.588]

Качество чугунов оказывает влияние на значение коэффициента трения и износоустойчивости фрикционной пары. Сравнительные значения коэффициентов трения и величин износа некоторых фрикционных материалов, работающих в паре с различными чугунами при температуре около 120° С, давлении в пределах 1,5—7,5 кГ/см и скоростях скольжения от 4 до 15 м/сек, полученные на стенде непрерывного трения, приведены на фиг. 346. Зависимость коэффициента трения тех же фрикционных материалов от температуры при трении по хромоиикелевому чугуну и тех же условиях испытаний показаны на фиг. 347. Как видно из фиг. 346, а, наибольшее значение коэффициента трения получено при трении по ковкому чугуну. Коэффициенты трения фрикционных материалов зависят от качества материала металлического элемента трущейся пары. Значения коэффициента трения вальцованной ленты 6КВ-10 и материала 6КХ-1 по различным металлическим элементам при температуре поверхности трения около 200° С, давлении 2,5 кПсм -и скорости скольжения около 10 м/сек приведены в табл. 89.  [c.573]

Коэффициент трения накладок, уже обгоревших в процессе работы, значительно выше, чем у нового сырого материала. Поэтому, чтобы получить с первых же торможений высокое значение коэффициента трения, следует провести термообработку материала Ретинакс , заключающуюся в нагревании поверхности трения материала до 400—420° С (т. е. до начала выгорания легких составляющих фенолформальдегидной смолы) без свободного доступа окисляющей среды (например, в песке) до прекращения обильного дымовыделения [193]. Хотя Ретинакс при нагреве выше 450° С и не сгорает, но интенсивность его изнашивания резко возрастает. И все же в тормозных узлах с температурой 1000, 600 и 400° С износостойкость колодок из материала Ретинакс выше, чем износостойкость других видов фрикционных материалов, соответственно в 3, 6 и 10 раз. Прирабатываемость колодок из Ретинакса несколько затруднена вследствие его высокой износоустойчивости и изменения фрикционных свойств неработавшего материала под действием температуры (в связи с падением коэффициента трения). Поэтому в случаях применения указанного материала необходимо добиваться возможно более полного прилегания колодок к тормозному шкиву, протачивая для этого шкив и колодки. Для получения оптимальной прира-батываемости пары трения и получения максимальных начальных значений коэффициента трения рекомендуется [181] наносить на поверхность трения металлического элемента пары мягкий теплопроводный слой. В настоящее время исследовательские работы по изучению свойств Ретинакса широко ведутся в различных областях машиностроения и диапазон тормозных устройств с использованием этого материала непрерывно расширяется. Широкая экспериментальная проверка Ретинакса на тормозах шагающих экскаваторов, где температура нагрева достигает 360° С при давлении 7—12 кПсм и где за одно торможение выделяется до 660 ккал (работа торможения примерно равна 2,6-10 кГм), показала значительное преимущество его перед другими существующими типами фрикционных материалов как по износоустойчивости, так и по стабильности величины коэффициента трения. Поверхности трения шкивов тормозных устройств в процессе работы полировались без заметных царапин или задиров. Срок службы тормозных накладок из Ретинакса оказался в 10—13 раз выше, чем из других материалов. Хорошую работоспособность Ретинакс показал также в тормозах буровых лебедок [194], где температура достигает 600° С при давлении р = 6ч-10 кГ/см . В этих тормозах износостойкость материала Ретинакс оказалась в 6—7 раз выше, чем у асбокаучукового материала 6КХ-1. Срок службы материала Ретинакс в тормозах грузовых автомобилей оказался в 4—7 раз выше, чем у других асбофрикционных композиций. Проведенные лабораторные испытания Ретинакса в муфтах и тормозах кузнечно-прессового оборудования [192] (при р = 10ч-13 кГ/см 5.%  [c.536]


Вкрапление в состав металлокерамики твердых минералокерамических частиц [197] увеличивает коэффициент трения, но несколько повышает износ металлического элемента пары. Количество и состав керамических частиц обусловливают фрикционные свойства материала. Достаточно высокая механическая прочность и постоянство фрикционных свойств в диапазоне рабочих температур приводят ко все более широкому использованию таких материалов, менее подверженных термической усталости, чем обычные металлокерамики. Износостойкость их в 3—10 раз выше, чем материалов на асбестовой основе. Металлокерамические и минералокерамические материалы обладают меньшим изменением фрикционных свойств и износоустойчивости, чем асбофрикцион-ные материалы на органическом связующем. Так, на фиг. 321 показано изменение коэффициента трения и износа металлокерамического материала (кривая 1) и асбофрикционного материала с органическим связующим (кривая 2) в зависимости от изменения температуры для одинаковых условий работы [184]. Металлокерамические материалы допускают давления до 28 кПсм вместо 1,5—8 кПсм , принимаемых для асбофрикционных материалов.  [c.542]

Металлическими элементами трущейся пары, сочетающими хорошие фрикционные свойства с высокой теплопроводностью и достаточной механической прочностью, являются хромистые бронзы типа Бр.Х0,8. В отношении износоустойчивости эта бронза в паре с материалом Ретинакс несколько уступает паре Ретинакс — ЧНМХ [190]. Однако вследствие более высокой теплопроводности бронзы (превышающей теплопроводность чугуна в 5 раз) температуры на поверхности трения оказываются более низкими и кривая и.зменения тормозного момента в процессе торможения не имеет характерного пикового возрастания к концу торможения, как это наблюдается при трении пара Ретинакс —ЧНМХ, что способствует увеличению плавности торможения. Максимальное значение коэффициента трения материала Ретинкс ФК-16Л по этой бронзе при температуре около 400° С было равно 0,45, а минимальное значение — 0,2. Для металлокерамики ФМК-8 соответственные значения коэффициента трения были 0,6 и 0,25. Поверхность трения бронзы после многократных торможений в паре с материалом Ретинакс покрывается /580  [c.580]

Из фрикционных материалов, выпускаемых отечественной промышленностью, наилучшими свойствами применительно к использованию в тормозах подъемно-транспортных машин обладает материал ЭМ-2 по ГОСТ 15960—70 (вальцованная лента 6КВ-10), выпускаемый толщиной от 5 до 10 мм и шириной от 30 до 160 мм в виде отрезков прямой ленты необходимой длины или свернутой в рулон. При различных условиях работы вальцованная лента имеет высокую износоустойчивость, стабильный коэффициент трения, мало изменяющийся в процессе работы при нагреве тормоза. Вальцованная лепта хорошо работает в паре с чугунным или стальным тормозным шкивом, имеющим твердость поверхности трения не ниже ЯВ250 при более низкой твердости происходит повышенный износ стального тормозного шкива и фрикционного материала.  [c.172]


Смотреть страницы где упоминается термин Коэффициент трения и износоустойчивость фрикционной пары : [c.539]    [c.547]    [c.149]   
Смотреть главы в:

Тормозные устройства в машиностроении  -> Коэффициент трения и износоустойчивость фрикционной пары



ПОИСК



Износоустойчивость

К п фрикционных

К трения фрикционных пар

Коэффициент трения

Коэффициенты фрикционных

Пара фрикционная

Тренне коэффициент

Фрикцион

Фрикционные Коэффициент трения



© 2025 Mash-xxl.info Реклама на сайте