Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Приведение дифференциальных уравнений к форме Лагранжа

Ирландский математик Гамильтон указал способ приведения дифференциальных уравнений Лагранжа к нормальному виду, дающий симметричные, т. е. одинаковые по форме уравнения относительно разных переменных, входящих в них. Эти дифференциальные уравнения получили название канонических дифференциальных уравнений движения. Они называются также уравнениями Гамильтона.  [c.202]

Линейные преобразования, выполняемые для приведения к каноническому виду кинетической и потенциальной энергий, не отражаются на главных частотах. Это утверждение, с одной стороны, основывается на общей теории квадратичных форм, а с другой — вытекает из теории линейных дифференциальных уравнений. Действительно, непосредственно видно, что, построив общее решение системы дифференциальных уравнений Лагранжа второго рода в координатах 0у, можно найти общее решение уравнений движения в исходных координатах ри применяя формулы линейного преобразования координат. При этом решения характеристического уравнения — главные частоты — не изменяются ).  [c.252]


Рассмотрим задачу колебаний приведенной массы М = Pig, подвешенной на невесомой нити, и массы M = Pjg, которая создает натяжение нити. Для решения задачи удобно воспользоваться дифференциальным уравнением движения материальной точки в направлении оси у (уравнением Лагранжа первого рода) в форме  [c.50]

В первой главе рассматриваются уравнения Лагранжа второго рода для механических систем с иеременными массами. С помощью принципа условного затвердевания получено удобное на практике выраягение для обобщенной силы, возникающей за счет изменения кинетической энергии частиц перемепной массы. Исследована структура приведенного момента массовых сил и составлено дифференциальное уравнение движения машинного агрегата относительно его кинетической энергии. Рассматривается вопрос о влиянии масс обрабатываемого продукта, поступающих к исполнительным звеньям механизма, на инерционные параметры и суммарную приведенную характеристику машинного агрегата. В аналитической форме даются условия работы широких классов машинных агрегатов, время разбега и выбега которых мало но сравнению с общим временем их движения. Выясняется динамический смысл этих условий.  [c.7]


Смотреть страницы где упоминается термин Приведение дифференциальных уравнений к форме Лагранжа : [c.371]    [c.40]   
Смотреть главы в:

Аналитическая динамика  -> Приведение дифференциальных уравнений к форме Лагранжа



ПОИСК



I приведения

Дифференциальные уравнения в форме Лагранжа

Лагранжа дифференциальное

Уравнения Лагранжа

Уравнения для в форме Лагранжа

Уравнения форме

Форма дифференциальная

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте