Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тема 17. Каноническая форма уравнений движения

Введение. Принцип наименьшего действия и его обобщение, произведенное Гамильтоном, переводят задачу механики в область вариационного исчисления. Уравнения движения Лагранжа, вытекающие из стационарности некоторого определенного интеграла, являются основными дифференциальными уравнениями теоретической механики. И тем не менее мы еще не достигли конца пути. Функция Лагранжа квадратична по скоростям. Гамильтон обнаружил замечательное преобразование, делающее функцию Лагранжа линейной по скоростям при одновременном удвоении числа механических переменных. Это преобразование применимо не только к специальному виду функции Лагранжа, встречающемуся в механике. Преобразование Гамильтона сводит все лагранжевы задачи к особенно простой форме, названной Якоби канонической формой. Первоначальные п дифференциальных лагранжевых уравнений второго порядка заменяются при этом 2га дифференциальными уравнениями первого порядка, так называемыми каноническими уравнениями , которые замечательны своей простой и симметричной структурой. Открытие этих дифференциальных уравнений ознаменовало собой начало новой эры в развитии теоретической механики.  [c.190]


Так как из какого-либо полного решения уравнения в частных производных первого порядка выводятся все остальные полные решения, теорема, которую я здесь сформулировал, дает также решение другой интересной задачи, а именно по некоторой данной системе элементов, которые связаны с временем в возмущенном движении системой дифференциальных уравнений в канонической форме, найти все другие системы элементов, которые обладают тем же свойством.  [c.292]

Такая форма записи уравнений движения неголономных систем интересна тем, что дает возможность обобщить на неголономные системы некоторые теоремы и утверждения, относящиеся к области теории интегрирования обычных канонических уравнений, рассматриваемых в механике голономных систем.  [c.146]

В 28 показано, что уравнения Лагранжа (28.11) инвариантны относительно точечного преобразования (28.17), связывающего любые два набора обобщенных координат системы д, Q. Разумеется, что при любом преобразовании (28.17) сохраняют свою форму и канонические уравнения движения (33.4). Однако уравнения Гамильтона допускают более широкий класс преобразований. Это связано с тем, что в методе Гамильтона роль независимых переменных наряду с обобщенными координатами выполняют и обобщенные импульсы р . Поэтому преобразования, сохраняющие форму канонических уравнений движения (33.4), относятся к классу преобразований  [c.198]

Применение канонических элементов заключается в том, что уравнения движения задачи сохраняют каноническую форму. Между тем астрономы чаще всего применяют эллиптические элементы, и в этом случае уравнения не сохраняют каноническую форму. Тем не менее, как мы видели в 81, уравнения всегда представляются в следующей форме.  [c.315]

Таким образом, совпали формы записей дифференциальных уравнений движения по основному (уравнения Лагранжа) и прямому способам, а уравнения, полученные обратным способом, отличаются от них по форме. Это связано с тем, что при пашем выборе обобщённых координат кинетическая энергия имеет каноническую форму  [c.44]

В уравнении Гамильтона переменными, которые определяют движение механической системы, являются обобщенные координаты q и обобщенные моменты р. Гамильтонова функция W(p, q), которая входит в гамильтоновы уравнения, обычно является функцией обеих этих переменных. Если мы преобразуем переменные q и р в новые переменные q и р посредством какого-либо произвольного преобразования, общая форма гамильтоновых уравнений изменится. Однако Якоби показал, что существует некоторое преобразование, отличающееся тем свойством, что оно оставляет форму этих уравнений неизменной. Так как уравнения Гамильтона часто называются каноническими уравнениями динамики, то указанным преобразованиям было дано наименование канонических преобразований. Канонические преобразования представляют собой специальный случай касательного преобразования. Касательное преобразование в трехмерном пространстве определяется так  [c.915]

Можно сделать попытку обозреть основные этапы развития аналитической динамики до середины XIX в. Первым шагом явилось установление лагранжевой формы уравнений движения, затем лагранжева теория вариации произвольных постоянных, а также теория Пуассона. Следующим этапом явились во-первых, представление Гамильтоном интегральных уравнений посредством единственной характеристической функции, определяемой а posteriori посредством интегральных уравнений, предполагаемых известными, или посредством условия, что она одновременно удовлетворяет двум дифференциальным уравнениям в частных производных, и, во-вторых, установление канонических уравнений движения. Вслед за тем Якоби свел интегрирование дифференциальных уравнений к проблеме нахождения полного интеграла единственного уравнения в частных производных и дал общую теорию связи интегрирования систем обыкновенных дифференциальных уравнений и уравнения в частных производных первого порядка. Наконец, была разработана теория систем канонических интегралов.  [c.910]


Случай кратных корней уравнения частот при исследовании движения системы с двумя степеЕшми свободы отличается тем, что при приведении выражения кинетической энергии к каноническому виду (е) оказывается, что и выражение потенциальной энергии П приобретает каноническую форму и переход от системы координат Xi к 0,- становится лишним. При этом существует бесконечное множество систем нормальных координат. Геометрически это можно объяснить так если Jn Ф Х2, то, приравнивая П константе, мы получим в плоскости Ох[Х2 эллипс (рис. 35). Его оси симметрии будут совпадать к осями системы координат 00102- Если A,i = Х2, эллипс превращается в окружность. Тогда осями 0i и 02 могут быть два произвольных взаимно перпендикулярных диаметра этой окружности.  [c.247]

Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]


Смотреть страницы где упоминается термин Тема 17. Каноническая форма уравнений движения : [c.317]    [c.315]   
Смотреть главы в:

Лекции по классической динамике  -> Тема 17. Каноническая форма уравнений движения



ПОИСК



Вид канонический

Каноническая форма

Канонические уравнения уравнения канонические

Каноническое уравнение движени

Уравнения движения канонические

Уравнения канонические

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте