Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Диффузионный способ получения покрытий

ДИФФУЗИОННЫЙ СПОСОБ ПОЛУЧЕНИЯ ПОКРЫТИЙ  [c.135]

Кроме диффузионных способов получения защитных покрытий с успехом применяют плазменно-дуговое напыление поверхности детали различными сплавами в вакуумных установках. Однако этот способ требует исключительной чистоты покрываемой поверхности и неприменим для получения покрытий во внутренних полостях деталей.  [c.220]

При рабочей температуре под действием градиента концентраций развиваются диффузионные процессы, в результате которых состав покрытия усредняется, что обеспечивает получение расплава с невысокой химической активностью и удовлетворительными защитными и технологическими свойствами. Этот способ получения покрытий с высокими защитными свойствами предпочтительнее и потому, что физические свойства покрытий можно определять по правилу аддитивности свойств фритт, окислов или ионов.  [c.129]


В практике довольно широко распространен способ получения покрытий на основе алюминидов посредством предварительного нанесения на поверхность изделия шликеров, паст или суспензий с последующей их термообработкой в условиях, обеспечивающих формирование покрытий с нужными свойствами. Поскольку составы обмазок и условия отжига можно менять в широких пределах, появляются реальные пути регулирования свойств покрытий в нужном направлении. В этом случае также чаще используют не чистый порошок алюминия, а его сплавы или смеси с другими элементами. Исключение составляют жаропрочные никелевые сплавы, для которых чистое алитирование во многих случаях обеспечивает достаточно надежное покрытие и необходимо только совершенствовать технологию его получения. Для получения покрытий из суспензий приготовляют порошковые смеси, взвешивают эту смесь в жидкости до образования густой и вязкой суспензии, которую наносят на покрываемую поверхность различными методами — пульверизацией, окунанием, намазкой. После сушки суспензии при повышенных температурах (обычно 100—200° С) изделие подвергают высокотемпературному отжигу для формирования конечных эксплуатационных свойств покрытия и получения диффузионной зоны на границе раздела основа—покрытие, обеспечивающей высокую прочность связи между ними. В зависимости от состава покрытия и основы отжиг проводят на воздухе, в инертной среде или в вакууме.  [c.274]

Цинковые покрытия, полученные диффузионным способом, обладают существенным преимуществом по сравнению с электролитическими или металлизационными, потому что прочность связи покрытия с основным металлом резко возрастает в результате образования диффузионного переходного слоя от основного металла к его внешней поверхности. Кроме того, постепенное уменьшение концентрации наносимого вещества по глубине диффузионного слоя обусловливает менее резкое изменение свойств при переходе от покрываемого металла к образующемуся диффузионному покрытию. При этом наносимое вещество проникает в глубину покрываемого изделия тем больше, чем выше температура и длительнее процесс диффузии.  [c.172]

С целью получения однородного диффузионного цинкового покрытия определенного химического состава и с определенной структурой, по своей коррозионной устойчивости не уступающего покрытию, полученному диффузионным способом с применением порошковой смеси, нами производилась термическая обработка цинковых покрытий, полученных жидким методом. Микроструктура цинкового покрытия, полученного жидким методом, представлена на рис. 3.  [c.175]

Диффузионное хромирование позволяет получать покрытие, которое может содержать до 30% хрома. Толщина слоя в зависимости от способа получения и вида применяемой стали составляет 60—120 мкм. Для того чтобы предотвратить образование карбида хрома, рекомендуется применять стали с максимальным количеством углерода 0,08 7о или сталь, стабилизированную титаном. Диффузионное хромирование находит широкое применение для крепежных деталей благодаря исключительной коррозионной стойкости и легкому демонтажу болтовых соединений. Срок службы таких деталей в 5 раз больше срока службы оцинкованных деталей. Температура диффузионного процесса составляет 1200— 1300° С, и дополнительная термическая обработка целесообразна только для болтов, рассчитанных на высокие нагрузки. Предельная температура применения их составляет 800° С. Кратковременно болты могут работать при температуре до 1100°С (резкие изменения температуры не являются препятствием). Диффузионное хромирование используют также для повышения срока службы измерительного инструмента, форм для прессования стекла, для литья под давлением легких сплавов и т. д.  [c.83]


Кроме хромовых имеется опыт применения и оценки антикоррозионных свойств других покрытий. В ряде парогенераторов, в топках которых сжигается твердое топливо, содержащее серу, использовано алитирование для защиты труб НРЧ. Нанесение покрытия осуществляется металлизационным способом с помощью аппаратов МГИ-1 и ЭМ-9. Покрытие состоит из двух слоев нижний — из нихрома, верхний — из алюминия общая толщина покрытия около 0,3 мм. Перед металлизацией проводят пескоструйную очистку труб. Процесс получения покрытия осуществляют непосредственно в парогенераторе во время проведения ремонтных работ. Покрытие наносят на гладкую поверхность труб, а также на шипы. Металлизационное алитирование защищает трубы НРЧ в течение нескольких лет, однако коррозионная стойкость этого покрытия значительно меньше, чем получаемого диффузионным хромированием.  [c.245]

По способу получения металлические покрытия делятся на гальванические, диффузионные, контактные, горячие, ваку-умно-и катодно-напыленные, плакированные и т. д. Особое значение гальванических покрытий в решении проблемы защиты металлов от коррозии заставляет выделить их в отдельную главу.  [c.193]

В заключение рассмотрим один из вариантов способа контактного газофазного насыщения, который пока применяют для нанесения диффузионных покрытий недостаточно широко, но который представляется весьма перспективным. Речь идет о диффузионном насыщении в кипящем или псевдоожиженном слое. Различные технологические процессы (сушка, окислительный обжиг, восстановление дисперсных материалов, безокислительный нагрев и охлаждение металлов), основанные на использовании кипящего слоя, нашли широкое применение в металлургической и химической промышленности. Основным закономерностям процессов тепло- и массообмена, происходящих в кипящем слое, конструкциям различных типов установок и их работе, эффективности и перспективам использования этих процессов во многих отраслях промышленности посвящена обширная литература [101 —108]. В работах [10, 71, 72] приводятся сведения об успешном применении фирмами США кипящего слоя для нанесения диффузионных покрытий на крупногабаритные изделия разнообразной формы из тугоплавких сплавов и отмечается необходимость дальнейших работ в этом направлении. Как полагают авторы монографии [108], метод кипящего слоя наиболее перспективен для большинства технологических процессов, основанных на гетерогенных реакциях, т. е., в частности, и для процессов получения покрытий газофазным контактным способом.  [c.98]

Дальнейшие исследования позволили разработать электролизный способ получения диффузионных покрытий на тугоплавких металлах и сплавах при насыщении такими элементами, как Ве, В, А1, 8 , Т1, V, Сг, Мп и др. [301 ]. Электролитом служат расплавленные фтористые соли, катодом — обрабатываемый материал, анодом — стержни из диффундирующего элемента. Электролиз солей производится постоянным током при 500—1200° С в зависимости от состава ванны.  [c.259]

Предложен способ получения на никелевых сплавах комплексных диффузионных покрытий на основе алюминидов при диффузионном насыщении одновременно титаном и алюминием.  [c.291]

В патенте предложен иной способ получения модифицированных бором, алюминием или хромом покрытий из дисилицидов молибдена или вольфрама на тантале. Для этого тонкие порошки дисилицидов на связке наносят на специально подготовленную поверхность и после сушки подвергают диффузионному отжигу при 1350° С в контейнере с засыпкой, содержащей окись алюминия, 20% В, А1 или Сг, и небольшие количества галогенида аммония. Полученное покрытие отличается плотностью, упругостью и термостойкостью.  [c.319]

Наслоенные и диффузионные покрытия весьма разнообразны как по своей природе, так и по способам получения.  [c.37]

Защитные металлические покрытия могут наноситься различными способами электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), плакированием (двухслойные металлы), погружением (горячие покрытия), диффузионным (термодиффузионные покрытия), химическим и контактным. Все металлические защитные покрытия в той или иной мере, в зависимости от способа получения, имеют большой недостаток — пористость исключение составляют плакированные покрытия.  [c.65]

Интенсификация процесса хромирования в стационарном токовом режиме может быть достигнута применением повышенной плотности тока, что возможно при осаждении покрытий в проточном электролите. При содержании в растворе 280—300 г/л СгОз и скорости протока 80—100 см/с допустимая плотность тока достигает 200—220 А/дм . Такой способ особенно эффективно использовать для получения покрытия большой толщины на наружной и внутренней поверхности цилиндрических деталей. Положительное влияние циркуляции электролита связано прежде всего с интенсификацией диффузионных процессов у поверхности катода. В этом же направлении сказывается осуществление хромирования в ультразвуковом поле. При интенсивности ультразвука 2—3 Вт/см и плотности тока 120—150 А/дм скорость осаждения хрома достигает 130—140 мкм/ч. Промышленная реализация последнего варианта часто затрудняется сложностью аппаратурного оформления процесса.  [c.157]


Сравнение методов алюминирования затруднено из-за различных свойств, толщины и назначения покрытий. В табл. 38 приведены наиболее характерные для каждого из сравниваемых методов данные о толщине покрытий, размерах стальной полосы, скорости движения при металлизации, производительности промышленных агрегатов и т. д. Из анализа данных табл. 38 следует, что наиболее универсальным способом является испарение в вакууме, так как имеется возможность регулировать в широких пределах толщину покрытий, отсутствуют хрупкие диффузионные слои между покрытием и основой, и ее механические свойства не ухудшаются. При равных толщинах покрытия, наносимые в вакууме, обладают меньшей пористостью, чем покрытия, полученные методом электрофореза и погружением в расплав. Адгезия и внешний вид покрытий получаются достаточно хорошими без всякой дополнительной обработки, в то время как при других методах нанесения необходим высокотемпературный отжиг и последующая прокатка стали с покрытием. Вакуумный метод нанесения является наиболее производительным (в расчете на единицу поверхности покрытия), что обусловлено большой скоростью движения полосы и высокой скоростью конденсации паров металла в вакууме.  [c.223]

Мелкие изделия [1 — 19, 24]. В 1929 г. были выставлены для испытаний в тех же самых местностях различные мелкие стальные изделия петли, болты, шайбы, скобы, винты и угловое железо. На этих изделиях испытывались покрытия, полученные различными способами горячие покрытия, гальванические, диффузионные, а также гальванические кадмиевые  [c.865]

Диффузионный способ может быть использован для получения толстых, прочно сцепленных с основой медноцинковых и некоторых других сплавов на стали. Технология процесса такова. На сталь электролитически наносят попеременно тонкие слои, например меди и цинка, после чего такое многослойное покрытие подвергается длительному нагреву. В результате взаимодиффузии меди и цинка образуется толстое медноцинковое покрытие, близкое по составу к латуни.  [c.124]

Эвтектическая диффузионная пайка боралюминия. Для соединения деталей из боралюминия между собой или с элементами конструкций из алюминиевых сплавов возможно использование способа эвтектической диффузионной пайки, заключающегося в нанесении тонкого слоя второго металла, образующего в результате взаимной диффузии эвтектику с металлом матрицы. В зависимости от состава матричного алюминиевого сплава могут быть использованы следующие металлы, образующие эвтектику серебро, медь, магний, германий, цинк, имеющие температуры образования эвтектик с алюминием 566, 547, 438, 424 и 382° С соответственно. В результате дальнейшей диффузии металла покрытия в основной металл концентрация его снижается, и температура плавления в зоне соединения постепенно повышается, приближаясь к температуре плавления матрицы. Таким образом, паяные соединения способны работать при температурах, превышающих температуру пайки. Однако необходимость строгого регламентирования толщины покрытия, а также чистоты покрытия и покрываемой поверхности, использование для получения таких покрытий метода вакуумного напыления делают этот процесс экономически нецелесообразным.  [c.192]

К числу наиболее распространенных катодных покрытий, обладающих более положительным потенциалом, чем потенциал защищаемого металла, относятся покрытия на основе хрома, никеля, кадмия, титана, меди, а также драгоценных металлов. Для получения таких покрытий разработан ряд способов, базирующихся на гальваническом и химическом осаждении, диффузионном насыщении из газовой, жидкой и твердой фаз, плакировании и др., которые подробно описаны в литературе.  [c.174]

Другим способом использования жидкого состояния является покрытие материалом матрицы волокон путем быстрой протяжки их через расплав матрицы. Для получения деталей покрытые проволоки затем соединяются диффузионным методом в закрытых штампах. Разработка диффузионных барьеров для волокон из тугоплавкого сплава будет способствовать применению жидкофазной техники для производства композиционных материалов в больших масштабах.  [c.265]

Напыляемые металлические покрытия часто подвергают последующей обработке для устранения пор с использованием жиров (смазки), воска, лаков и ингибиторов. Они являются хорошей основой для лакокрасочного покрытия. Однако их высокая защитная способность в результате применения смазок или лакокрасочных покрытий может снизиться, если основной металл в дальнейшем подвергнется коррозии из за повреждения покрытия, так как в этом случае рабочая площадь анода будет значительно уменьшена. При определенных сочетаниях покрытия и основного металла можно прибегнуть к термической обработке после напыления металла, чтобы улучшить сопротивление покрытия действию коррозии. Такая обработка может привести к образованию диффузионного сплава покрытия с основным металлом или увеличить количество оксида покрывающего металла в самом покрытии. Слои сплава или оксиды металла, полученные таким способом, могут обладать значительно более высокой сопротивляемостью действию коррозии, чем напыляемый металл покрытия.  [c.45]

Основной отличительной особенностью электроискрового поверхностного легирования от ранее рассмотренных способов является весьма малая доля диффузионного взаимодействия при формировании покрытия. У электроискрового легирования много общего с другими противоестественными способами получения покрытий (газоплазменным, плазменным, детонационным), которые освещены в работе [83] и в данном случае не рассматриваются.  [c.161]

Известен опыт применения боридных покрытий для защиты от коррозии и наводороживания теплообменников. Теплообменники, изготовленные из стали 10, эксплуатировались в условиях воздействия конденсации паров серной кислоты, образующихся из продуктов сгорания сернистого топлива. Боридное покрытие, состоящее из двух слоев FeB и FeBj, наносили при температуре 950 °С в виде порошкообразной смеси, содержащей 98 % В4С, 1,5 % AIF3 и 0,5 % парафина. Такое покрытие позволяет повысить в 10 раз коррозионную стойкость стали в наводороживающей сероводородсодержащей среде и одновременно повысить ее циклическую прочность. Испытания теплообменников, проведенные на стенде с переменным внутренним давлением при Ртах = 0>7 МПа с частотой 0,12 Гц показали, что без покрытия теплообменники вьщерживают от 20 до 160 тыс. циклов, с боридным покрытием - не менее 400 тыс. циклов Сб . В слабокислых минерализованных растворах в условиях периодического Смачивания цинковые покрытия, полученные электрохимическим и горячим способом, менее устойчивы, чем диффузионные слои из порошковой смеси. Оцинкованные диффузионным способом трубы в 25 раз устойчивее труб с цинковыми покрытиями из расплава и в 15 раз - с покрытиями, полученными электролитическим осаждением.  [c.64]

Для получения покрытий на поверхность деталей и заготовок наносят шликер (суспензию), сухой порошок, раствор или пасту, поэтому консистенция исходных продуктов в известной степени определяет выбор способа нанесения. Шликер и растворы наносят обычно окунанием, обливом, распылением с помощью пульверизатора, методом электрофореза, кистью. Сухие порошки наносят распылением в электростатическом поле высокого напряжения. Сухие порошковые смеси используют для получения диффузионных покрытий, которые образуются на деталях и заготовках, помещенных в муфель с порошковой смесью, при повышенных температурах. Пасты наносят на детали и заготовки путем намазывания шпателем, кистью, разбрызгиванием, напылением с помощью торкрет-машин. После нанесения покрытия сушат для удаления суспендирующих жидкостей, растворителей.  [c.73]


Толщины окисных покрытий, полученных химическим и анодизационным способами, а также металлических покрытий, полученных диффузионным способом, данным стандартом не нормируются. Для специальных целей толщины покрытий более 60 мк принимают кратными 10.  [c.683]

Было исследовано несколько способов защиты от окисления самым перспективным оказалось диффузионное силпцирование в твердой засыпке. Оно приводит к образованию соединения с основным металлом, аналогично методам защиты ниобия и молибдена. На сплаве V—МЬ образуется легированный дисилицид, который обычно имеет толщину примерно 0,076 мм. Силициро-ванные образцы сплава V—1Т1—бОМЬ испытывали в течение 50, 300 и 1000 ч при 1370, 1200 и 1100° С соответственно без разрушения. После соответствующей выдержки можно было проводить еще испытание образцов на разрыв. Указанная выше длительность выдержки сравнима со средней стойкостью наилучших покрытий, разработанных для ниобия и молибдена. Можно продлить срок службы указанных материалов, если улучшить технологию процесса получения покрытия, но более важным соображением является надежность и минимальное время до разрушения.  [c.176]

Совместное насыщение алюминием и магнием проводили либо в смеси порошков этих металлов, либо из паст на основе этих порошков, предварительно нанесенных на обрабатываемую поверхность. Соотношение алюминия и магния в насыщающей смеси колебалось в пределах от 90 10 до 70 30 инертной добавкой служила окись алюминия в количестве до 98% от всей смеси, в качестве активного газообразователя использовали 0,001% гидразиндигидрохлорида. При нанесении пасты в ее состав входило 25—75% смеси А1—Mg (90 10) и 75 —25% флюса, состоящего из хлористого калия (40%), хлористого натрия (40%), фтористого лития (6%) и алюминийнатрийфторида (14%). Температура диффузионного отжига колебалась в пределах 700— 1090° С время выдержки составляло обычно несколько часов. Данный способ получения комплексных алюминидных покрытий, легированных магнием, предложен для увеличения окалиностойкости и сопротивления термическому удару жаропрочных никелевых, кобальтовых и железных сплавов.  [c.291]

Так как шерардизация является процессом диффузионным и соверщается по обычным для диффузии законам, то покрытие, полученное диффузионным способом — шерардизацией, тем толще, чем выше температура нагрева (фиг. 119) и чем продолжительнее процесс покрытия (фиг. 120).  [c.186]

Комплексные покрытия на основе тугоплавких соединений могут быть также получены путем предварительного нанесения покрытия из тугоплавкого переходного металла любым другим путем (например, электролитическим, из газовой фазы и т. п.) и затем диффузионного насыщения этого покрытия неметаллом. Таким способом в работе [19] были получены на ниобии и тантале покрытия, состоящие из наружного слоя MoSij и внутренних слоев — силицидов ниобия и тантала. Процесс получения таких покрытий состоял из нанесения на поверхность ниобия и тантала слоя МоОд, восстановления этого слоя водородом до чистого молибдена и последующего силицирования в газовой среде, содержащей SI I4+H2. Покрытия этого типа обладали более высокими защитными свойствами по сравнению с покрытиями, полученными при непосредственном силицировании ниобия и тантала.  [c.37]

Для ряда покрытий сжимающие остаточные напряжения имеют максимум у линии раздела защитный слой — подложка (рис. 15, б, слева). Такая эпюра напряжений может иметь мёсто при насыщении углеродистых сталей некарбидообразующими элементами, оттесняющими углерод из зоны насыщения в глубь основного металла, а также при получении защитных покрытий гальванотермическим способом. При диффузионном отжиге деталей с гальваническими покрытиями, металл которых способен диффундировать в сталь, на границе раздела покрытие—подложка будет возникать диффузионный слой, обладающий большим удельным объемом, чем основной металл покрытия, что вызовет в этом месте появление сжимающих напряжений.  [c.75]

Кроме вышеперечисленных достоинств диффузионных цинковых покрытий, они обладают повышенной твердостью и износостойкостью по сравнению с цинковыми покрытиями, полученными гальваническим или металлизатшонным способами.  [c.174]

Коррозионная стойкость диффузионных цинковых покрытий во многих средах также выше, чем цинковых покрытий, полученных другими способами [2]. Так, трубы с диффузионным цинковым покрытием показали высокую коррозионную стойкость при их примененпи в оросительных холодильниках коксохимических заводов, в качестве свай морских сооружений, в насосно-компрессорных трубах при добыче агрессивных сернистых нефтей и т. п. [3-5].  [c.174]

Исследована возможность получения на тугоплавких металлах (ниобии, тантале, молибдене и вольфраме) покрытий из карбидов циркония и ниобия. 1) нанесением на подложку слоя карбидообразующего металла (циркония или ниобия) с последующей его карбидизацией 2) методом припекания порошка карбида на связке, п 3) методом диффузионной сварки в вакууме тонких горячепрессованных карбидных пластинок с металлической подложкой. В результате исследований для покрытий пз карбида циркония на ниобии, тантале, молибдене и вольфраме рекомендуются 2-й и 3-й способы, а для покрытий из карбида ниобия — 1-й и 3-й. Приводятся режимы нанесения покрытий для каждого металла. Библ. — 7 назв., рис. — 4, табл. — 1.  [c.338]

В статье изложены результаты исследования влияния состава насыщающих смесей на структуру и жаростойкость комплексных диффузионных покрытий на сплаве ЖС6К. Критерием стойкости покрытий является глубина разрушенной части покрытия. По результатам испытания на сопротивление высокотемпературной газовой коррозии наиболее перспективными являются композиции А1-1-В-)-Сг, А1-Ь81, А1+В, 81-ЬТ1, полученные совместным способом, и композиции 81—Т1, В—А1, 81—А1, А1—Т1, полученные последовательным способом насыщения. Рис. — 4.  [c.341]

Использование покрытий не является единственным способом подавления реакции на поверхности раздела. Легирование упроч-нителя также позволяет изменить состав продуктов реакции. Так, например, Харден и Райт [15] обнаружили химическое взаимодействие в слоистом композите алюминий — бор, полученном диффузионной сваркой, проводившейся при температуре 873 К с различными временами выдержки под давлением 2,8 кГ/мм . Было установлено, что уменьшение прочности и модуля упругости материала начинается после выдержки в течение соответственно 3 и 5 ч оба параметра значительно снижаются, если реакция идет в течение 8 ч. Напротив, в слоистом материале А1—В4С, полученном диффузионной сваркой в тех же условиях, не было обнаружено продуктов реакции.  [c.131]

На ниобии трудно получить плотно прилегающие электролитические покрытия. Для нанесения железных покрытий разработай удовлетворительный способ, по которому железо вначале частично осаждают из сложной ванны, состав которой приводится ниже, а затем образцы с нанесенными покрытиями нагревают в течение 1 час при температуре около 820° в вакууме 1-10" мм рт. ст. Для получения более хороших результатов образец предварительно нагревают на воздухе в течение 2 час при 200°, чтобы предотвратеть образование пузырей. Слой электролитически осажденного железа толщиной 0,0025 мм после такой обработки образует диффузионно-срощенную поверхность, пригодную для последующего осаждения, плакировки, пайки или нанесения покрытия погружением.  [c.458]

Учитывая вредное влияние крупных диффузионных микропор на свойства композиционных материалов, растворение упрочнителя и снижение температурного порога рекристаллизации вследствие диффузии компонентов матрицы в волокно, следует искать пути подавления взаимной диффузии. Одним из эффективных путей может явиться использование разделительных (барьерных) слоев между матрицей и волокном. При разработке методов создания разделительных покрытий применимы и методы химикотермической обработки, как это достигалось в графитизи-рованных сплавах железа [631. Компоненты разделительного покрытия могут быть внесены предварительно в основу с тем, чтобы защитные слои возникали при эксплуатации деталей из композиционного материала или во время предварительной термической обработки. Рассмотренные пути получения барьерных покрытий наряду с рекомендованными в работах [125, 130, 239] могут явиться эффективными способами повышения служебных характеристик композиционного материала.  [c.201]


Смотреть страницы где упоминается термин Диффузионный способ получения покрытий : [c.321]    [c.2]    [c.31]    [c.270]    [c.18]    [c.343]    [c.103]    [c.77]    [c.50]    [c.422]   
Смотреть главы в:

Антикоррозионная служба предприятий. Справочник  -> Диффузионный способ получения покрытий



ПОИСК



16 — Способы получения

Покрытие диффузионные

Получение покрытий

Способы диффузионная



© 2025 Mash-xxl.info Реклама на сайте