Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теоремы Пуансо и Сильвестра

Теоремы Пуансо и Сильвестра. Как и ранее, будем предполагать, что центр тяжести G находится в покое. Рассмотрим эллипсоид, связанный с телом и движущийся вместе с ним пусть уравнение его в системе (5123 имеет вид  [c.240]

В этом отношении работа Пуансо является единственной, если не считать некоторых замечательных выводов, сделанных из нее Сильвестром 1). Самая простая и, может быть, наиболее интересная теорема в этом направлении заключается в следующем. Однородный материальный эллипсоид того же размера и той же формы, как эллипсоид инерции данного тела, имеющий неподвижный центр и катящийся по плоскости, расположенной так же, как и неподвижная плоскость Пуансо, может быть приведен в движение таким образом, что в дальнейшем он будет двигаться совершенно одинаково с данным вращающимся телом. Иными словами, положение главных осей инерции и угловые скорости вращения вокруг этих осей будут всегда одинаковыми в обоих случаях.  [c.121]


Если мы допустим, что размеры данной поверхности второго порядка таковы, что радиус-вектор р по длине равен угловой скорости твёрдого тела, совершающего соответствующее движение Пуансо, то выше изложенной геометрической теореме Сильвестра можно дать такую кинематическую форму если телу, совершающему движение Пуансо, сообщить постоянную угловую скорость вокруг нормали к неподвижной плоскости качения, то сложное движение будет снова движением Пуансо, и новая плоскость качения будет параллельна первоначальной изменится лишь катящаяся поверхность.  [c.552]

Теорема Якоби о разложении движения симметричного гироскопа на прямое и обращённое движения Пуансо. В 282 бы ю указано, что общий лагранжев случай движения весомого твёрдого тела получается из движения сферического весомого гироскопа прибавлением постоянной угловой скорости вокруг оси симметрии, т. е. перпендикулярно к плоскости качения одного из движений Пуансо, о которых говорилось в предыдущем параграфе. По теореме Сильвестра ( 278) от прибавления такой постоянной угловой скорости мы получаем из движения Пуансо снова движение Пуансо. Таким образом мы и приходим к теореме Якоби движение симметричного весомого гироскопа всегда может быть разложено на два движения на прямое движение Пуансо и на обращённое движение Пуансо.  [c.563]

Теорема Сильвестра. Полодию для общего случая движения Пуансо можно определить, как геометрическое место точек, лежащих на нейтральной поверхности второго порядка и обладающих тем свойством, что плоскости, касательные к поверхности в различных точках этой кривой, находятся на постоянном расстоянии от центра поверхности. Поэтому на основании формул (47. 65) и (4 7.G6) на стр. 535 и 536 при обозначениях, принятых в настоящей гллве, мы можем уравнения иолодии наиисать гак  [c.551]


Смотреть страницы где упоминается термин Теоремы Пуансо и Сильвестра : [c.174]   
Смотреть главы в:

Аналитическая динамика  -> Теоремы Пуансо и Сильвестра



ПОИСК



Пуансо

Сильвестр

Сильвестра теорема

Сильвестрен 913, VII

Теорема Пуансо



© 2025 Mash-xxl.info Реклама на сайте