Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Свободные и вынужденные колебания. Резонанс

СВОБОДНЫЕ И ВЫНУЖДЕННЫЕ КОЛЕБАНИЯ. РЕЗОНАНС 65  [c.65]

Свободные и вынужденные колебания. Резонанс  [c.65]

Уравнение (18.3) показывает, что движение точки М при резонансе является результатом наложения свободных и вынужденных колебаний точки, так же, как и при pфk.  [c.50]

Если частоты свободных и вынужденных колебаний совпадают, т. е. если p = k, то возникает резонанс, тогда решение уравнения (141) представляется в виде  [c.276]

Так как частоты свободных и вынужденных колебаний совпадают k = р = 2), то возникает резонанс и закон движения точки определяется уравнением (143)  [c.280]


При решении задач, в которых требуется определить условие, обеспечивающее попадание материальной точки в резонанс, не следует интегрировать дифференциальное уравнение движения. Для этого достаточно, воспользовавшись составленным дифференциальны.м уравнением движения, определить круговые частоты свободных и вынужденных колебаний и приравнять их друг другу.  [c.106]

Возникает вопрос об определении резонанса при наличии сил сопротивления. Можно считать, что резонанс имеет место при 2=1, т. е., как и раньше, при равенстве частот свободных и вынужденных колебаний. Также можно назвать резонансным случаем тот, когда г=У 1—он наступает при равенстве частот вынужденных и затухающих колебаний. Наиболее часто случаем резонанса называют тот, который характеризуется условием 2= 1.  [c.348]

Части машин, движущиеся по определенным циклам, передают путем непосредственного соприкосновения или через упругую окружающую среду механические импульсы другим конструктивным элементам, подвергая их вынужденным колебаниям, частота которых может быть близка к частоте свободных колебаний этих элементов. Совпадение периодов или частот свободных и вынужденных колебаний обусловливает возможность теоретически неограниченного возрастания амплитуды колебаний. Это явление называется резонансом. Опасность резонанса заключается в интенсивном возрастании деформаций (амплитуды) и соответствующем нарастании напряжений.  [c.316]

Резонансные методы правильнее назвать методами колебаний, поскольку они объединяют методы свободных и вынужденных колебаний изделия или его части. Именно к вынужденным колебаниям относят понятие резонанса, т. е. совпадения частоты возбуждения с частотой собственных колебаний системы.  [c.125]

Обращение амплитуды в бесконечность при и = jq характеризует явление резонанса между свободным и вынужденным колебаниями, которое играет важную роль во всех разделах физики. Знаменатель в выражениях (19.3) и (19.4а), обращение которого в нуль приводит к бесконечно большой амплитуде, называется резонансным знаменателем . Образно выражаясь, колеблющаяся система тем охотнее поддается воздействию внешней силы, чем ближе ее собственная частота к частоте изменения внешней силы.  [c.138]

Рис. 32. Резонанс свободного и вынужденного колебаний. Вековое нарастание амплитуды Рис. 32. Резонанс свободного и вынужденного колебаний. Вековое нарастание амплитуды
При отсутствии сопротивления колебаниям (у = 0) и равенстве частот свободных и вынужденных колебаний (а=1) происходит неограниченный рост перемещений. Это явление носит название резонанса. На самом деле неограниченного роста перемещений, получаемого из решения уравнения (17.116), не происходит вследствие того, что само линейное дифференциаль-  [c.108]


В предыдущем исследовании свободных и вынужденных колебаний предполагалось, что на движение звездочки и обоймы не действуют никакие силы сопротивления. Вследствие этого предположения в случае свободных колебаний было найдено, что амплитуда колебаний остается постоянной, хотя эксперименты показывают, что со временем амплитуды уменьшаются и колебания постепенно затухают. В случае вынужденных колебаний при резонансе было найдено, что амплитуда колебаний может неограниченно увеличиваться, хотя, как мы знаем, вследствие демпфирования амплитуды всегда остаются ниже определенного верхнего предела. Чтобы приблизить аналитическое решение вопроса о колебаниях к действительным условиям, необходимо принять во внимание силы неупругого сопротивления (демпфирования). Эти силы могут возникать от различных причин (трение между соприкасающимися поверхностями, сопротивление воздуха или жидкости, электрическое сопротивление, внутреннее трение вследствие несовершенной упругости и т. д.).  [c.57]

При Z 1, т.е. при р к, К °°. При р = к, т.е. при равенстве круговых частот свободных и вынужденных колебаний, имеет место явление, называемое резонансам. При резонансе переменная амплитуда вьшужденных колебаний неограниченно возрастает (в реальных условиях при учете сил сопротивления движению амплитуда является конечной).  [c.99]

Амплитуда колебаний при всех прочих постоянных факторах прямо пропорциональна амплитуде сап(7п,ах возбуждающего воздействия. Из уравнения (56) следует, что амплитуда виброперемещений и виброускорений подрессоренной массы зависит от соотношения частот свободных и вынужденных колебаний. Амплитуда достигает максимума, когда Шп = ыо. В этом случае наступает резонанс. Резонансная амплитуда колебаний =  [c.212]

Во время работы двигателя клапанные пружины совершают вынужденные колебания. Если число свободных колебаний пружины становится равным или кратным числу ее вынужденных колебаний, то наступает резонанс. При резонансных колебаниях запас прочности пружины значительно уменьшается, что может привести к ее поломке. Поверка клапанных пружин современных многооборотных автомобильных двигателей на резонанс является поэтому обязательной. Определение резонансных напряжений и запасов прочности клапанных пружин, несмотря на значительную трудоемкость, пока еще не является достаточно надежным. Вследствие этого при поверке клапанных пружин на резонанс ограничиваются определением и сравнением их чисел свободных и вынужденных колебаний.  [c.298]

Отсюда видно, что амплитуда С зависит не только от величины возмущающей силы, но и от круговых частот свободных и вынужденных колебаний. При р = ш из уравнения (729) получаем бесконечно большое значение амплитуды. В этом случае наступает так называемый резонанс колебаний. При отсутствии сопротивлений приближение к резонансу всегда связано с прогрессивным ростом амплитуд колебаний.  [c.481]

Из этого выражения видно, что резонансу с высшими частотами собственных и вынужденных колебаний отвечают меньшие значения амплитуд при резонансе. При совпадении частот свободных и вынужденных колебаний не во всех случаях происходит возрастание амплитуд относительных перемещений. Так, при синфазной работе приводных устройств одинаковой конструкции (499) увеличение амплитуды во время резонанса будет только при нечетных значениях п (п = 1, 3, 5. . . ). В этом случае значение [(—1)" — 1 ] будет равно —2 и увеличение амплитуды будет значительным. При четном значении п (п = 2, 4, 6,. . . ) последний член выражения (499) будет равен нулю, т. е. увеличения амплитуд при совпадении частот собственных и вынужденных колебаний не будет. Обратное явление происходит при антифазной работе приводных устройств. Здесь увеличение амплитуд будет происходить при четном значении п. При нечетных значениях п последний член выражения (500) исчезнет и увеличения амплитуд относительных перемещений не будет наблюдаться.  [c.376]

Во-вторых, хотя наблюдение подтверждает весьма значительное усиление вынужденных колебаний в случае резонанса, т. е. б случае совпадения частот свободных и вынужденных колебаний, однако на опыте никогда не наблюдается то беспредельное возрастание разма-хоБ колебаний, которое для случая резонанса было нами получено в 35.  [c.95]

В предыдущих обсуждениях свободных и вынужденных колебаний не рассматривалось влияние диссипативных сил, таких, как силы трения или сопротивления воздуха. В результате было получено, что амплитуда свободных колебаний остается неизменной с течением времени, но, как показывают эксперименты, амплитуда с течением времени уменьшается, и колебания постепенно затухают. В случае вынужденных колебаний из теории следует, что при резонансе амплитуда может возрастать беспредельно. Однако, как известно, вследствие демпфирования амплитуда при установившемся поведении системы всегда имеет некоторую конечную величину даже при резонансе.  [c.65]

Полученное число колебаний сравнивают с частотой вынужденных колебаний (пульсацией потока жидкости) от гидронасоса, не допуская резонанса, т. е. кратности частот свободных и вынужденных колебаний. Однако в некоторых случаях при правильно выбранных массах движущихся деталей гидрОзамка и жесткости упругих элементов, а также при несовпадении частот собственных и вынужденных колебаний явление клевания все же может иметь место.  [c.58]


При использовании стоячих волн возбуждают свободные или вынужденные колебания либо объекта контроля в целом (интегральные методы), либо его части (локальные методы). Свободные колебания возбуждают путем кратковременного внешнего воздействия на объект контроля, например, ударом, после чего он колеблется свободно. Вынужденные колебания предполагают постоянную связь колеблющегося объекта контроля с возбуждающим генератором, частоту которого изменяют. Информационными параметрами являются частоты свободных колебаний или резонансов вынужденных колебаний, которые несколько отличаются в связи с воздействием возбуждающего генератора. Эти частоты связаны с геометрическими параметрами изделий и скоростью распространения в них ультразвука. Иногда измеряют величины, связанные с затуханием колебаний в объекте контроля амплитуды свободных или резонансных колебаний, добротность колебаний, ширину резонансного пика.  [c.98]

Если исходная информация о нелинейных диссипативных силах базируется на экспериментальных данных, полученных в режиме моногармонических колебаний, то при использовании этой информации для анализа других режимов требуются некоторые коррективы. Наиболее часто встречается случай, когда имеет место наложение двух колебательных процессов, из которых один (с частотой О) существенным образом зависит от диссипативных факторов, а другой (с частотой со) от них практически не зависит. Подобный случай наблюдается, например, в нерезонансных зонах моногармонических вынужденных колебаний, которым сопутствуют достаточно интенсивные свободные колебания при резонансе на определенной гармонике возбуждения и одновременном воздействии достаточно интенсивного возбуждения другой частоты при совместных параметрических и вынужденных колебаниях и в ряде других случаев.  [c.148]

Малые колебания механической системы с одной степенью свободы. Потенциальная и кинетическая энергия системы при малых колебаниях вблизи положения устойчивого равновесия. Критерий устойчивости положения равновесия. Свободные, затухающие и вынужденные колебания гармонического осциллятора. Явление резонанса.  [c.150]

Существенно важным элементом теории является величина интервала, на протяжении которого отдельный внутренний вибратор заметно откликается. Уже было указано ( 49), что величина этого интервала связана с числом свободных колебаний, которые может совершать вибрирующее тело. Так, если интервал между собственной частотой и частотой вынужденного колебания, необходимый для того, чтобы снизить резонанс до от максимума, равен полутону, то это значит, что после 9,5 свободных колебаний интенсивность снизится до / 0 первоначального значения и то же самое для других интервалов. На основании рассмотрения эффектов трелей в музыке Гельмгольц заключает, что случай уха в некотором отношении соответствует описанному он дает нижеприводимую таблицу, показывающую получающееся в этом случае соотношение между разностью свободной и вынужденной частот и интенсивностью резонанса, измеряемого квадратом амплитуды колебания.  [c.433]

Свободные незатухающие колебания в системах с двумя степенями свободы. Нормальные колебания (моды). Парциальные и нормальные частоты. Биения. Понятие спектра колебаний. Методика анализа колебаний двух связанных осцилляторов. Затухание колебаний и диссипация энергии. Вынужденные колебания. Резонанс. Колебания систем со многими степенями свободы. Дисперсионное соотношение.  [c.47]

Колебания точки М складываются из свободных затухающих колебаний, описываемых первым членом правой части формулы (172), и гармонических вынужденных колебаний, описываемых вторым членом формулы, происходящих с частотой изменения возмущающей силы. Амплитуда вынужденных колебаний зависит не только от максимального значения Н возмущающей силы, но (гораздо более) от частоты р. При частоте р возмущающей силы, близкой к частоте собственных колебаний, амплитуда может достигать очень большой величины. В этом случае возникает резонанс.  [c.201]

Как отмечалось в первом томе, резонанс возникает при вынужденных колебаниях в результате притока энергии в систему извне. При особых условиях поглощения системой внешней механической энергии амплитуда возрастает, и возникает резонанс. В случаях, рассмотренных в первом томе, резонанс возникал, если период свободных или собственных колебаний совпадал с периодом возмущающей силы. Физически резонанс проявлялся в возрастании амплитуды вынужденных колебаний.  [c.308]

Как уже было указано, при неравномерном движении тяговой цепи в последней возникает сложный колебательный процесс, сочетающий в себе как вынужденные колебания от периодически изменяющихся внещних динамических нагрузок, так и свободные колебания упругой цепи. Максимально возможные нагрузки возникнут при резонансе, когда периоды свободных и вынужденных колебаний цепи будут одинаковы. Обобщенным коэффициентом динамичности Кз можно приближенно учесть, насколько близко действующие нагрузки соответствуют максимально возможному случаю. Коэффициент Кд зависит от упругих свойств цепи и параметров конвейера (длины, скорости, щага цепи, числа зубцов звездочка и др.)- Более детальное рассмотрение вопроса выходит за пределы данного курса (подробнее смотри рекомендуемую литературу)-  [c.47]

Методы свободных и вынужденных колебаний дополняют один другой. При малом внутреннем трении (слабом затухании) точнее определяется декремент затухания из свободных колебаний. Точное установление полуширины затрудняется резкой остротой кривой резонанса. При большом внутреннем трении положение обратное и более пригоден метод вынужденных коле баний. В практике металловедения наиболее широкое ггрименение получил низкочастотный крутильный маятник,, опиоаи-  [c.243]

При П-ийшп получим случай резонанса. Напомним опять, что мы здесь не учитывали свободных колебаний оболочки. При совместном действии свободных и вынужденных колебаний требуется найти общее решение системы неоднородных уравнений (8.189).  [c.382]

Определив значения частот X свободных крутильных колебаний системы РУ сепаратора, можно оценить опасность возникновения резонанса. Если частоты Я отличаются от частоты и вынужденных колебаний (угловой скорости рабочего режима сепаратора) менее, чем на 30%, конструктор может на основе анализа выражений (10), (11) разработать конструктивные меры по повышению вибронадежности механической системы РУ (увод из резонансной зоны) или определить значения допустимых по вибронадежности скоростей со рабочих режимов сепаратора.  [c.425]

Резонанс в колебательной системе возникает при совпадении частоты гармонич. внешней силы с одной из собственных частот. Т. о., состав Н. к., свохгственных данной системе, существенно определяет черты как свободных, так и вынужденных колебаний в данной системе. Если в системе есть поглощение энергии, то Н. к. не являются строго гармоническими, но если доля поглощённой энергии за один период Н. к. мала, то они представляют собой экспоненциально затухающие колебания при очень больших поглощениях энергии Н. к. становятся апериодическими.  [c.238]

При использовании методов колебаний возбуждают свободные или вынужденные колебания либо ОК в целом (интегральные методы),. лябо его части (локальные методы). Свободные колебания возбуждают путем кратковременного внешнего воздействия на ОК, например путем удара, после чего он колеблется свободно. Вынужденные колебания предполагают постоянную связь (через преобразователь) колеблющегося ОК с возбуждающим генератором, частоту которого изменяют. Измеряемыми величинами служат частоты свободных колебаний либо резонансов вынужденных колебаний, которые несколько отличаются от свободных под влиянием связи с возбуждающим генератором. Эти частоты связаны с геометрией ОК и скоростью распространения ультразвука в его материале. Иногда измеряют изменение амплитуды колебаний при вариации частоты в широком диапазоне частот — аплитудно-частотную характеристику (АЧХ) или величины, связанные с затуханием колебаний амплитуды свободных или резонансных колебаний, добротность колебаний, ширину резонансного пика. Методы вынужденных колебаний, основанные на анализе колебаний системы ОК — преобразователь при резонансных частотах или вблизи них, называют резонансными. Различные варианты методов колебаний рассмотрены в 2.6.  [c.11]


Частота и период вынужденных колебаний при резонансе равны частоте k и периоду Т = 2nlk свободных колебаний точки. Фаза вынужденных колебаний /г + б —я/2 отстает от фазы возмущающей силы kt- -b на величину я/2.  [c.51]

Задача 930. На груз массой т= кг, подвешенный на пружине с жесткостью с = 1600 н/.м, действует возмущающая сила с ампл -тудой 100 н и частотой, равной частоте свободных незатухающих колебаний. Во избежание резонанса к грузу подсоединяется демпфер, создающий силу сопротивления, пропорциональную первой степени скорости груза (коэфс шциент пропорциональности k). При каком значении коэ( ициента k амплитуда вынужденных колебаний не превысит 5 с.м Массой де шфера пренебречь.  [c.333]


Смотреть страницы где упоминается термин Свободные и вынужденные колебания. Резонанс : [c.99]    [c.73]    [c.440]    [c.221]    [c.35]   
Смотреть главы в:

Курс теоретической механики Том 2 Часть 1  -> Свободные и вынужденные колебания. Резонанс



ПОИСК



92, 102, 111, 121, 307, 309 —Вынужденные колебания 101—105 — Свободные колебания

Колебания вынужденные

Колебания вынужденные свободные

Колебания свободные

Резонанс

Резонанс колебаниях

Резонанс при вынужденных колебаниях



© 2025 Mash-xxl.info Реклама на сайте