Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Интегрирование несобственные равномерно сходящиеся

Как видим, интеграл Лапласа при s > Sq мажорируется сходящимся интегралом, зависящим от параметра р (неравенство (6.33), где S Re р), а при s > Sq — мажорируется сходящимся интегралом, не зависящим от параметра р (неравенством (6.34) ). Следовательно, интеграл Лапласа не только сходится при s > Sq (что было установлено ранее), но и равномерно сходится при s Sj > Sq. Последнее обстоятельство чрезвычайно важно, так как равномерно сходящийся несобственный интеграл от непрерывной функции параметра, во-первых, представляет непрерывную функцию этого параметра и, во-вторых, в таком интеграле при интегрировании по параметру допустимо изменение порядка интегрирования. Оба эти факта легко обосновываются или непосредственно или отделением в интеграле действительной и мнимой частей, для которых в силу их равномерной сходимости упомянутые факты справедливы [13].  [c.201]



Машиностроение Энциклопедический справочник Раздел 1 Том 1 (1947) -- [ c.0 ]



ПОИСК



Интегрирование

Равномерность



© 2025 Mash-xxl.info Реклама на сайте