Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Галеркина Ритца

Формулировка метода конечных элементов. Основные соотношения МКЭ для задач статики и динамики конструкций могут быть получены как обобщения известных вариационных методов Галеркина, Ритца и других, например коллокации, наименьших квадратов, на пространство кусочно-непрерывных базисных или пробных функций специального вида [47]. Для построения этого пространства исходная расчетная область D (конструкция или ее отдельные элементы) покрывается сеткой, составленной из совокупности М достаточно простых непересекающихся подобластей - конечных элементов Д , связанных между собой в отдель-  [c.104]


Для решения уравнений технической теории оболочек, как моментной, так и безмоментной, успешно использовались методы Навье (двойных тригонометрических рядов), Бубнова — Галеркина, Ритца, кол локаций, конечных разностей и др. В монографии Власова кроме них излагается метод расчета осесимметричных безмоментных оболочек на сосредоточенные нагрузки с помощью теории функций комплексного переменного. Ряд практически важных задач для осесимметричных оболочек исследовал В. Флюгге  [c.257]

Изучение динамических свойств нелинейных систем, как известно, не может быть в принципе выполнено при помощи линейного математического аппарата, а теоретическое исследование устойчивости, качества и эффективности регулирования нелинейных автоматических систем существенно затруднено и может быть выполнено только для простейших нелинейных автоматических систем. Именно поэтому для приближенного исследования нелинейных автоматических систем высокого порядка были предложены различные аппроксимации, позволяющие заменять исследования нелинейных систем исследованиями некоторых эквивалентных им линейных систем (методы А. А. Кобзарева, наименьших квадратов, малых возмущений, вариации постоянных, вариационный Галеркина — Ритца, вычисления среднего значения энергии и др.).  [c.37]

Дан полный математический анализ краевых задач иелииейиой теории оболочек. Для всех физически осмысленных постановок доказаны теоремы разрешимости и корректности в условиях глубокой нелинейности. Приведены условия единственности решений и условия неединственности. Получили обоснование в этом круге нелинейных задач методы приближенного решения Бубнова — Галеркина, Ритца, Ньютона — Канторовича и др. Большое внимание уделено нелинейной устойчивости, в которой различаются две проблемы оценка числа решений краевой задачи и выбор наиболее реального. Подробно проанализированы возможности принципа линеаризации Эйлера, дано строгое математическое обоснование существования нижних критических чисел, развит статистический подход. Основу рассмотрений составили топологические и вариационные соображепия.  [c.2]

Отметим здесь важную особенность разложений (23.14) они не столь чувствительны к гладкости исходных данных. Так, они сходятся даже в том случае, если Л содержит компоненты в виде б-функций, т. е. сосредоточенные силы при достаточно малой величине их интенсивности. Вместе с этим столь же быстрая сходимость ряда (23.14) будет иметь место и при равномерной нагрузке р, если она достаточно мала. Принципиальной разницы здесь нет. При использовании других приближенных методов (Бубнова — Галеркина, Ритца, конечных разностей, конечных элементов) налицо большое различие в эффективности, сильно зависящей от гладкости нагрузки. Некоторые же методы (конечные разности, конечные элементы) вообще не могут непосредственно использоваться, если нагрузка содержит разрывы типа сосредоточенных сил. Приходится предварительно производить численно-аналитическую обработку  [c.203]

Оценки погрешности метода Бубнова — Галеркина — Ритца  [c.245]

Метод конечных элементов, по крайней мере его основы, известен уже более полувека, но настоящий взлет он получил лишь с развитием современных средств информатики. Интегральные представления известны достаточно давно благодаря работам Галеркина, Ритца, Куранта и Гильберта [1-4] (здесь отмечены только эти работы, как внесшие наиболее существенный вклад). Однако применение интегральных представлений расширялось по мере того, как разрабатывались методы решения систем линейных и нелинейных алгебраических уравнений больших размерностей. Действительно, громадная работа по решению линейной системы с несколькими десятками уравнений и таким же количеством неизвестных отталкивала большинство инженеров, и такими вычислениями занимались лишь немногие специалисты, которые, впрочем, разрабатывали всевозможные ухищренные методы, применявшиеся в течение ряда лет, некоторые из которых используются еще и сегодня (Сутвел, Якоби, Гаусс).  [c.7]


Среди прямых методов решения вариационных задач наиболее широкое применение получили методы Рэлея—Ритца, Бубнова— Галеркина.  [c.127]

Настоящая глава посвящена изложению одного из наиболее перспективных способов дискретизации непрерывных задач — методу конечных элементов. Метод будет сформулирован как обобщение матричных методов сил н перемещений строительной механики на случай континуальных систем. Преимущества такой формулировки — в очевидных возможностях обобщения на случай нелинейных и неконсервативных систем, недостаток —в завуали-рованности связи с традиционными вариационными методами — Ритца и Бубнова — Галеркина, а также в трудностях перенесения на краевые задачи немеханического происхождения.  [c.130]

В главе 4 будет дана другая формулировка метода конечных элементов, эквивалентная предыдущей, но использующая непосредственно идеологию методов Ритца и Бубнова — Галеркина. Преимущество этого подхода — в открыФнн возможностей для обоснования, усовершенствования и обобщения на широкие классы краевых задач математической физики, недостаток — в трудностях машинной реализации соответствующего алгоритма для проблем, содержащих в качестве неизвестных вектор-функции илн дифференциальные операторы порядка выше второго.  [c.130]

Установленная здесь классификация не является общепринятой. Одни авторы считают прямыми те методы, которые приводят краевую задачу теории упругости к алгебраическим уравнениям, относя к этим методам и соответствующие вариационные методы (Ритца — Тимошенко, Бубнова — Галеркина) другие считают прямыми вое приближенные методы и т. д.  [c.9]

Методы Ритца (1908 г.)—Тимошенко (1910 г.), Бубнова <1913 г.) — Галеркина (1915 г.), и Треффца (1933 г.) предлагают различные способы приближения к действительному значению на основе приведенных выше вариационных принципов. По методу Власова (1Й6 г.) — Конторовича (1942 г.) решение задается з форме  [c.12]

Большую популярность за последнее время приобрел в а р и а ц и о н н ы й мет о д В. 3. Власова. В этом методе искомая функция зависит от двух переменных и удовлетворяет дифференциальному уравнению в частных производных (например, прогиб в задаче об изгибе упругой пластинки). Эта функция выражена в виде произведения двух функций, из которых одна представляет заданную функцию от одного переменного, д другая — искомую функцию от другого. Вместо искомых постоянных коэффициентов, рассматриваемых в методе Бубнова — Галеркина (а также в методе Ритца — Тимошенко) и определяемых линейными алгебраическими уравнениями, в вариационном методе Власова, построенном на прямом применении принципа возможных перемещений, рассматривается система искомых функций.  [c.65]

Решение прямой задачи как в перемещениях, так и в напряжениях требует интегрирования довольно сложной системы дифференциальных уравнений в частных производных и, как правило, сопряжено со значительными математическими трудностями. Поэтому при решении прямой задачи часто используют приближенные методы,например метод сеток, прямые методы вариационных задач (методы Ритца, Бубнова—Галеркина, Канторовича и др.), а также получивший за последнее время широкое применение метод конечных элементов. В некоторых же случаях решение можно эффективно получить с помощью так называемого полуобратного метода Сен-Венана.  [c.81]

Среди прямых методов решения вариационных задач наиболее широкое применение получили метод Ритца, метод Канторовича н метод Бубнова—Галеркина — метод приближенного решения диффе-  [c.97]

Аналитические методы, а также классические приближенные методы (Ритца, Канторовича, Бубнова—Галеркина и т. д.) позволяют найти функцию Ф (%, х ) лишь для сравнительно простых поперечных сечений бруса.  [c.184]

Проблема сходимости приближенных решений, построенных по методу Бубнова — Галеркина, к точному решению в том случае, когда оператор — положительно определенный, эквивалентна аналогичной проблеме для процесса Ритца, и поэтому нет нужды в ее самостоятельном рассмотрении. Для других случаев такие исследования выполнены. Рассматривался, например [178], вопрос о решении интегральных уравнений Фредгольма второго рода и было показано, что решение по методу Бубнова — Галеркина совпадает с решением, получаемым при замене ядра на вырожденное при разложении его в ряд по произведениям координатных функций.  [c.154]

Так же как в процессе применения метода Ритца при реализации метода Бубнова — Галеркина, возникают трудности, связанные с погрешностью вычислений (увеличивающиеся с ростом числа удерживаемых координатных функций). Проиллюстрируем сказанное на одном примере. Пусть требуется найти решение уравнения  [c.156]

Методы Рэлея (1877), см. уравнения (4.57)—(4.61), Ритца (1908) — Тимошенко (1910), Бубнова (1913) — Галеркина (1915) и Треффца (1933) предлагают различные способы приближения w к действительному значению на оснтзе приведенных выше вариационных принципов. По методу В. 3. Власова (1946) —Л. В. Канторовича (1942) решение задается в форме ряда  [c.11]

Из-за трудностей интегрирования уравнения (3.153) приходится прибегать к различным приближенным методам определения частот колебаний, к которым относятся замена кривого стержня (арки) системой с конечным числом степеней свободы, введение конечного числа точечных масс [144] замена арки многоугольной рамой [98], замена арки упруго связанными между собой абсолютно жесткими звеньями [72], применение метода Рэлея —Ритца для интегрирования уравнения колебаний [122] метода Галеркина [69] и т. д.  [c.84]


Если пластинка не имеет двух противоположных шарнирно опертых краев, то прогиб не может быть представлен рядом (а) и точное решение сильно осложняется. В последнем случае часто применяют приближенные методы—вариационные методы Ритца —Тимошенко, Бубнова — Галеркина, Треффца, Власова — Канторовича, метод конечных разностей и т. д.  [c.121]

Постоянные параметры а,- выбирают из условий, чтобы функция (8.1) по возможности точнее представляла искомую функцию w(x, у). Из различных методов отыскания постоянных параметров й рассмотрим два метод Ритца —Тимошенко и метод Бубнова—Галеркина.  [c.153]

Таким образом, метод Бубнова — Галеркина, как и метод Ритца — Тимощенко, исходит из принципа возможных перемещений, а поэтому оба метода равноправны. В обоих методах аппроксимирующую функцию необходимо выбирать так, чтобы она удовлетворяла геометрическим граничным условиям, а статическим — необязательно.  [c.161]

Решение системы (10.54) представляет большие трудности, поэтому целесообразно применять вариационные методы решения метод Бубнова—Галеркина или метод Ритца—Тимошенко.  [c.252]

Вариациопные принципы и основанные на них вариационные методы играют важную роль в механике деформируемого твердого тела как в части получения дифференциальных уравнений задач, так и в части построения приближенных решений. К методам получения прнближеш1ых решений относятся методы Ритца — Тимошенко, Канторовича — Крылова, Бубнова — Галеркина и др. В основе всех этих методов лежат излагаемые ниже вариационные принципы в той или иной их комбинации. Хотя получение приближенных решений на основе этих методов при наличии мощных ЭВМ постепенно отходят на второй план, они все еще находят применение. В процессе применения ЭВМ на подготовительном этапе есть необходимость задачу интегрирования систем дифференциальных уравнений свести к задаче решения систем алгебраических уравнений. В этой части вариационные методы завоевывают все более и  [c.186]

В настоящей главе будут рассмотрены лишь наиболее часто применяемые при решении задач прикладной теории упругости вариационные и другие приблиншнные методы (методы Ритца, Бубнова — Галеркина, Канторовича — Власова, сеток, конечных элементов).  [c.189]

В рассмотренных нами примерах решения задачи методами Ритца и Бубнова — Галеркина используются одни и те же аппроксимирующие функции прогиба, причем эти функ-  [c.200]

В большинстве случаев исполь,зование метода Бубнова — Галеркина при решении такого рода задач приводит к менее громоздким выкладкам, чем применение метода Ритца. Однако следует помнить, что в случае применения метода Бубнова — Галеркина в той форме, которая была нами рассмотрена, функция т обязателыто доляата удовлетворять как геометрическим, так и статическим граничным условиям.  [c.201]

Энергетические методы широко применяют в задачах статики и динамики тонкостенных конструкций. Наиболее распространенным из них является метод Релея — Ритца, предусматривающий представление решения в виде ряда по координатным функциям. Выбор метода решения задачи — интегрирование дифференциального уравнения (классическими методам и или методом Галер-кина) или применение энергетического метода — часто связан с определенными трудностями. Можно показать, что при условии корректного применения метода Галеркина к системе дифференциальных уравнений [22], он в математическом отношении эквивалентен методу Релея — Ритца [133]. Однако, если имеется только дифференциальное уравнение, то следует применять метод Галеркина или другие методы его решения, а если имеется только выражение, определяющее энергию системы, следует отдать предпочтение энергетическим методам. Эти соображения не помогают выбрать метод решения задач, которые сформулированы как в дифференциальной, так и в энергетической постановке. Он определяется в этих случаях предшествующими расчетами, а также наличием программ решения задач на собственные значения (для устойчивости и колебаний) для вычислительных машин. Традиционно энергетические методы получили наибольшее распространение в США и Германии, в Англии отдавалось предпочтение конечно-разностным методам решения дифференциальных уравнений, а в СССР — методу Галеркина.  [c.179]

Несколько большее число работ посвящено динамике прямоугольных ортотропных пластин при больших прогибах. По-види-мому, впервые задачи такого рода применительно к однослойным (или симметричным) шарнирно опертым пластинам были рассмотрены в работах Амбарцумяна и Гнуни [8], Хассерта и Новинского [68]. В первой работе, посвященной динамической устойчивости, применялась процедура Ритца — Галеркина и учитывался сдвиг по толщине (см. раздел VI), а во второй — получено решение в рядах для прямоугольной пластины с закрепленными кромками. Позднее Ву и Винсон [193 ] получили существенно более простое решение этой задачи, используя гипотезы Бергера [26]. Круглые и треугольные пластины из ортотропного в прямоугольных координатах материала рассматривались в работах Новинского [103 ] и Новинского и Измаила [104].  [c.190]

Наряду с дифференциальным может быть реализован (точно или приближенно, как в методе Галеркина) энергетический подход к решению задачи (метод Релея — Ритца). При этом используется выражение для потенциальной энергии, записанное через напряжения и деформации, ft/2  [c.223]

Эту подстановку использовали Муштари и Саченков при решении задачи устойчивости методом Галеркина, она также с успехом была применена для расчета ортотропных усеченных конических оболочек энергетическим методом Релея — Ритца [23].  [c.230]

Вариационные методы изучались также в статьях Уилера и Мюра [78] и By [81]. Отметим, что в работе By вместо метода Рэлея — Ритца использован метод Галеркина.  [c.383]

Как H в случае первого приближения, уравнения Ритца во втором приближении полностью совпадают с уравнениями Бубнова — Галеркина соответствующего приближения.  [c.248]

Связь метода Рэлея — Ритца с методом Галеркина  [c.71]

Если в качестве координатных функций gi (х) взята полная система функций, то увеличивая число членов ряда (2.80), можно теоретически с любой степенью точности определить требуемое количество собственных значений Р и построить соответствующие им собственные функции задачи. Но при практическом использовании метода Галеркина, как и метода Рэлея—Ритца, приходится ограничиваться сравнительно небольшим числом членов ряда (2.80). Точность и трудоемкость решения определяются не полнотой системы координатных функций, а тем, насколько удачно выбраны первые функции этого ряда.  [c.73]

Следовательно, йц = ац bij = Ьц и результат приближенного решения задачи методом Рэлея—Ритца полностью совпадает с результатом решения методом Галеркина, если в обоих случаях используется один и тот же ряд (2.86), построенный из функций сравнения. Но из сказанного не следует, что эти два приближенных метода полностью идентичны. При решении задачи методом Рэлея—Ритца можно использовать значительно более широкий класс аппроксимирующих функций, чем при решении задачи методом Галеркина в методе Рэлея—Ритца это допустимые функции, а в методе Галеркина—функции сравнения.  [c.76]


Смотреть страницы где упоминается термин Галеркина Ритца : [c.137]    [c.228]    [c.233]    [c.233]    [c.235]    [c.237]    [c.239]    [c.241]    [c.243]    [c.106]    [c.250]   
Теория колебаний (2004) -- [ c.314 ]



ПОИСК



Бубнова — Галеркина Ритца — Трефтца

Галеркин

Метод Ритца — Галеркина

Методы Ритца, Бубнова — Галеркина, коллокаций и родственные методы

Оценка погрешности метода Бубнова — Галеркина — Ритца (БГР) в некоторых задачах нелинейной теории пологих оболочек

Приближение по Галеркину Ритцу

Приближенные методы расчета собственных форм и частот поперечных колебаний пластинки — методы Ритца и Галеркина

Ритца

Связь метода Рэлея—Ритца с методом Галеркина



© 2025 Mash-xxl.info Реклама на сайте