ПОИСК Статьи Чертежи Таблицы Отметим здесь важную особенность разложений (23.14): они не столь чувствительны к гладкости исходных данных. Так, они сходятся даже в том случае, если Л содержит компоненты в виде б-функций, т. е. сосредоточенные силы при достаточно малой величине их интенсивности. Вместе с этим столь же быстрая сходимость ряда (23.14) будет иметь место и при равномерной нагрузке р, если она достаточно мала. Принципиальной разницы здесь нет. При использовании других приближенных методов (Бубнова — Галеркина, Ритца, конечных разностей, конечных элементов) налицо большое различие в эффективности, сильно зависящей от гладкости нагрузки. Некоторые же методы (конечные разности, конечные элементы) вообще не могут непосредственно использоваться, если нагрузка содержит разрывы типа сосредоточенных сил. Приходится предварительно производить численно-аналитическую обработку [Выходные данные]