Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Телескопическая система фокусировка

Трубы гониометров представляют собой телескопические системы с внутренней фокусировкой и имеют одинаковые посадочные места для окуляров. Путем замены окулярных устройств можно превращать зрительную трубу в коллиматор и автоколлиматор.  [c.51]

Фокусировка окуляра телескопической системы  [c.214]

Общий вид автоколлимационного нивелира НА-3 показан на фиг. 16. Труба нивелира представляет собой телескопическую систему с внутренней фокусировкой. Автоколлимационный окуляр системы куб с двумя сетками .  [c.46]


Картины, наблюдаемые в скрещенном и параллельном полярископах, являются дополнительными предпочтение скрещенному расположению поляризатора и анализатора отдается только из-за более легкой их юстировки по темному полю. Оптическая схема поляризационной установки приведена на рис. 4.7. Активный элемент 4 помещается между поляризатором 3 и анализатором 5. В качестве источника света 1 удобно использовать лазер, пучок излучения которого расширяется телескопической системой 2. Если лазер излучает поляризованный свет, то необходимость в поляризаторе 3 отпадает. Для получения наиболее четкой световой картины на экране (фотопленке) 7 плоскость фокусировки объектива 6 (как и при работе с интерферометрами) следует еовмеш,ать С центральным сечением образца 4,  [c.183]

Фиг. 107. Трехлинзовые оптические системы а — трехлинзовый конденсор 6—окуляр Кельнера в — ортоскопическая лупа Штейнгеля г — фотообъектив триплет д — астрономический объектив (типа Тэйлора) е — объектив геодезической зрительной трубы с внутренней фокусировкой ж—фотообъектив Руссар 1—19 з — объектив телескопической системы и — фотообъектив Пантогональ к — орто-скопический фотообъектив л — фотообъектив с удлиненным задним отрезком м — фотообъектив с укороченной длиной к — галилеевская зрительная труба о — фотообъектив — упрощенный Плазмат. Фиг. 107. Трехлинзовые <a href="/info/14569">оптические системы</a> а — <a href="/info/412018">трехлинзовый конденсор</a> 6—<a href="/info/76710">окуляр Кельнера</a> в — ортоскопическая лупа Штейнгеля г — фотообъектив триплет д — <a href="/info/69254">астрономический объектив</a> (типа Тэйлора) е — объектив геодезической <a href="/info/14685">зрительной трубы</a> с <a href="/info/306639">внутренней фокусировкой</a> ж—фотообъектив Руссар 1—19 з — <a href="/info/87669">объектив телескопической системы</a> и — фотообъектив Пантогональ к — орто-скопический фотообъектив л — фотообъектив с удлиненным задним отрезком м — фотообъектив с укороченной длиной к — галилеевская <a href="/info/14685">зрительная труба</a> о — фотообъектив — упрощенный Плазмат.
После объектива под некоторым углом друг к другу расположены две пары телескопических галилеевских систем 4. Поворачивая эти пары систем, их можно вводить на пути лучей, выходящих из объектива 3. Каждая пара может работать либо в прямом ходе, давая соответствующее увеличение, либо в перевернутом. Таким образом, поворачивая системы и выключая их совсем, можно получить пять ступеней увеличения микроскопа при быстром переходе от одной к другой. При изменении увеличения фокусировка микроскопа не нарушается. Линзы 5 проектируют изображение объекта в фокальную плоскость сменных окуляров 6, имеющих увеличенное поле зрения.  [c.118]

В телескопическом HP, имеющем отверстие в центре глухого зеркала, формируется лишь один узконаправленный пучок 3 (см. рис. 4.6, а), который отстает от пучка сверхсветимости 2 на время одного двойного прохода излучения в резонаторе (At = 10 не — см.рис. 4.6, в). Это объясняется тем, что в такой оптической системе приосевые пучки — как сжимающиеся, так и многопроходные расширяющиеся — резонатором не поддерживаются. Расходимость пучка 3, как и при работе с резонатором без отверстия, при изменении М в пределах 5 < М 300 уменьшается от 2,5 до 0,115 мрад. В плоскости фокусировки при визуальном наблюдении видно одно яркое пятно, имеющее достаточно высокую стабильность. В распределении интенсивности в дальней зоне имеется несколько пичков (см. рис. 4.6, б), появление которых, вероятнее всего, связано с отражением излучения от границы отверстия в глухом зеркале. Относительная нестабильность положения оси диаграммы направленности и импульсной энергии пучка 3 значительно меньше, чем дифракционного. Характеристики выходного излучения исследовались при диаметрах отверстия 4, 8 и 10 мм. Мощность резонаторного пучка (рис. 4.9, кривая З ) при диаметре отверстия 8 мм для М — 5 составила 19 Вт (66% общей мощности), для М = 100 - 9,5 Вт (37%), для М 300 - 4,5 Вт (20%).  [c.123]



Смотреть страницы где упоминается термин Телескопическая система фокусировка : [c.145]   
Теория оптических систем (1992) -- [ c.214 ]



ПОИСК



Телескопическая система

Фокусировка

Фокусировка окуляра телескопической системы



© 2025 Mash-xxl.info Реклама на сайте