Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Равновесия термодинамического состояни

Работа термодинамическая диэлектриков и магнетиков — 175, 178 Равновесия термодинамического состояние — 25 Равновесия условие пространственно однородной системы — 114 Равновесия условие пространственно неоднородной системы — 122 Равновесия фаз условие — 127 Равновесное излучение — 92  [c.798]

Выше упоминалось, что состояние теплового равновесия изолированной системы полностью описывается лишь небольшим числом параметров. Эти физические величины имеют определенное значение для каждого теплового состояния, и в термодинамике они называются параметрами (или переменными) состояния, или термодинамическими параметрами (или переменными). Если выбрать совокупность независимых параметров так, чтобы она была необходимой и достаточной для описания термодинамического состояния, то остальные параметры, характеризующие состояние, являются функциями выбранных параметров. Число независимых параметров, необходимых для описания равновесного состояния системы, определяется эмпирическим путем.  [c.14]


Рассмотрим теперь процесс установления теплового равновесия, т.е. выравнивание температуры с количественной точки зрения. Если сделать тепловой контакт между телами достаточно слабым, можно добиться, чтобы скорость изменения их температуры стала сколь угодно мала. При этом можно считать, что каждое тело само по себе все время находится в состоянии термодинамического равновесия . Эти состояния можно характеризовать соответствующими значениями энтропии, и 5 2, которые будут функциями внутренних энергий тел, 1] и (72> и их объемов, и 1 2- предыдущей главе мы видели на конкретных примерах, каким образом равновесная энтропия зависит от этих двух параметров.  [c.73]

Надо подчеркнуть, что аддитивность свойств понимается в термодинамике не просто как результат мысленного разделения равновесной системы на подсистемы при сохранении всех свойств вещества на воображаемых границах частей деления и в их объеме. Речь идет о возможности совершения реального физического процесса, при котором система разделяется на удаленные друг от друга подсистемы либо образуется из них, но термодинамические состояния вещества при этом не изменяются. Примером таких процессов являются рассмотренные выше опыты, послужившие основанием для вывода о транзитивности теплового равновесия.  [c.28]

Критерии (11.1) и (11.37), (11.13) и (11.33) и т. д. гарантируют необходимый экстремум характеристической функции в некоторой ограниченной области изменения внутренних переменных системы только вблизи равновесия и, очевидно, не позволяют выяснить, является ли равновесие абсолютно устойчивым или метастабильным. В связи с этим целесообразно остановиться на том, какие термодинамические состояния надо  [c.115]

При равновесии термодинамические силы во всех фазах должны быть равными, поэтому если использовать вариации не нарушающие состояния равновесия систе-м ы, т. е. такие, что  [c.127]

Феноменологическая энтропия была введена Клаузиусом для сплошной среды. Больцман дал статистическую интерпретацию энтропии, предполагая среду дискретной. В формулировке Больцмана второй закон термодинамики гласит природа стремится перейти из менее вероятного состояния в более вероятное и термодинамическое равновесие соответствует состоянию с максимумом энтропии.  [c.8]

Рассматриваемое состояние плазмы называют состоянием локального термодинамического равновесия (ЛТР). Состояние ЛТР характерно для большинства стационарных плазм, получаемых в лабораторных условиях.  [c.230]

Если, кроме того, в системе не только все параметры постоянны во времени, но и нет никаких стационарных потоков за счет действия каких-либо внешних источников, то такое состояние системы называется равновесным состояние термодинамического равновесия). Термодинамическими системами обычно называют не всякие, а только те макроскопические системы, которые находятся в термодинамическом равновесии. Аналогично, термодинамическими параметрами называются те параметры, которые характеризуют систему в ее термодинамическом равновесии.  [c.15]

Состояние равновесия термодинамической системы определяется температурой Т и внешними параметрами at, а , характеризующими отношение системы к внешним телам.  [c.120]


Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие процессы, которые ослабляют это воздействие. Это положение было установлено Ле Шателье в 1884 г. и обосновано Брауном в 1887 г. и названо принципом Ле Шателье — Брауна.  [c.131]

Эмпирической температурой тела называют установленную-опытным путем меру отклонения термодинамического состояния тела от состояния теплового равновесия с тающим льдом, находящимся под нормальным атмосферным давлением.  [c.19]

Общие условия устойчивости равновесия термодинамических систем приводят к тому, что внешнее воздействие, выводящее систему из состояния равновесия, вызывает в этой системе такие  [c.109]

Температура. Состояние термического равновесия термодинамических систем связано с внутренним интенсивным параметром — температурой. В термически равновесном состоянии системы температура во всех ее точках одинакова.  [c.16]

Типичный пример локального равнов(Юия представляет собой система из двух находящихся в равновесии тел разной температуры (система, состоящая из нескольких тел различной температуры, называется термически неоднородной). Хотя при этом каждое из тел само по себе находится в равновесии, между телами равновесие отсутствует если осуществить тепловой контакт между телами, начнется передача теплоты от одного тела к другому. Термодинамическое состояние системы, состоящей из локально-равновесных частей, характеризуется температурами каждой из частей системы.  [c.11]

Устойчивое равновесие термодинамической системы характеризуется тем, что по устранении причины. Вызвавшей отклонение системы от состояния равновесия, система сама по себе возвращается в первоначальное равновесное состояние. При этом за время, в течение которого устанавливается термодинамическое равновесие (это время называется временем релаксации), в системе происходят различные неравновесные, а следовательно, и необратимые процессы, заключающиеся в затухании механических движений, выравнивании плотностей и температур и т.[д. Чтобы вывести систему из состояния устойчивого равновесия, необходимо совершить над системой (т. е. затратить извне) некоторую работу.  [c.109]

Условие равновесия термодинамической системы. Любой из возможных процессов изменения состояния системы должен удовлетворять неравенству Гиббса (3.30), выражающему собой основные (первое и второе) начала термодинамики.  [c.109]

Неравенства (3.44), как это ясно, являются следствием неравенства (3.32) выражающего условие равновесия термодинамической системы. Они могли бы быть получены несколько иным путем, если бы в качестве переменных, характеризующих изменение состояния системы при установлении равновесия, были взяты не S и И, а любая другая пара термодинамических величин. Выберем в качестве независимых переменных, например, р и Т. Тогда из выражения  [c.115]

При выводе условий фазового равновесия (4.2) предполагалось, что давления и температуры обеих фаз в состоянии равновесия одинаковы. Это предположение очевидно. Однако, строго говоря, следовало бы показать, что из общих условий равновесия термодинамической системы вытекают все три соотношения (4.2). Формальное доказательство этого состоит в следующем. Будем рассматривать обе фазы в совокупности как изолированную систему. В такой системе объем, внутренняя энергия и количество вещества неизменны, вследствие чего  [c.124]

Пусть имеется система, находящаяся в состоянии неполного термодинамического равновесия. Понятие энтропии вводится и для систем с конечным отклонением от равновесия. Для описания термодинамического состояния такой системы вводится параметр неравновесности Д (или несколько таких параметров 1=1, 2,. ..). Считаем, что внутренняя энергия е, отнесенная к единице массы, есть ф ункция плотности р, энтропии 15 и параметров неравновесности В состоянии равновесия (Эе/(9 ,=0. Обозначим через значение параметра в состоянии термодинамического равновесия.  [c.43]

Равновесие термодинамических систем по аналогии с механическими может быть устойчивым (стабильным), неустойчивым (лабильным) и относительно устойчивым (метастабильным). Равновесное состояние называется устойчивым, если по устранении возмущения, вызвавшего некоторое отклонение системы от этого состояния, система сама по себе возвращается в первоначальное состояние равновесия.  [c.15]

Термодинамика позволяет предсказать условия (критерии) равновесия (равновесного состояния) термодинамической системы.  [c.79]

Температура вещества внутри звезды очень высокая —порядка миллионов градусов, а вблизи внешней поверхности звезды — порядка нескольких тысяч градусов при таких температурах вещество звезды можно рассматривать как совершенный газ даже в том случае, когда давление и плотность чрезвычайно большие. Поэтому, допуская ещё, что имеет место локальное термодинамическое равновесие, уравнение состояния возьмём в виде  [c.285]

В том случае, когда состояние термодинамической системы не меняется с течением времени, т. е. свойства системы, а следовательно, и термодинамические параметры ее, сравниваемые в два различных момента времени, одинаковы, предполагают, что система находится в термодинамическом равновесии. Состояние равновесия термодинамической системы отличается от стационарного состояния системы, в котором значения термодинамических параметров поддерживаются неизменными во времени вследствие наличия потоков вещества или энергии (внешнего воздействия). Различие проявляется в том, что при прекращении внешнего воздействия в системе, находящейся до этого в стационарном состоянии, некоторые из термодинамических параметров изменяются в то время как в системе, находящейся в равновесии, все без исключения термодинамические параметры сохраняют неизменное значение.  [c.10]


В сложных системах можно использовать специальные регуляторы для снижения скорости протекания (т. е. торможения) процессов. Допустим, что система состоит из отдельных, различающихся одна от другой частей (по температуре, составу и т. п.). Состояние такой системы не является состоянием полного термодинамического равновесия и должно поддерживаться действием регуляторов — адиабатических оболочек, жестких или непроницаемых стенок, полупроницаемых перегородок и т. п. Если отключить эти регуляторы, то в системе разовьются неравновесные и необратимые процессы, в результате которых система будет приведена к состоянию полного равновесия. Если действие регуляторов осуществлять столь медленно, что в любой момент времени каждая из частей системы будет находиться в локальном равновесии, то состояние каждой из этих частей системы будет изменяться практически обратимым образом, несмотря на то, что в целом система не находится в равновесии. Именно в таких условиях протекают процессы в тепловых машинах и других устройствах.  [c.27]

Второе начало термодинамики выражается совокупностью положений, обобщающих экспериментальные данные, которые относятся, во-первых, к состояниям равновесия термодинамических систем, и, во-вторых, к происходящим в этих системах процессам. Многообразие процессов взаимного превращения теплоты в работу и различные аспекты, в которых эти процессы могут рассматриваться, объясняют наличие нескольких формулировок второго начала термодинамики.  [c.55]

При выводе условий фазового равновесия предполагали, что давления и температуры обеих фаз в состоянии равновесия одинаковы. Эти предположения очевидны. Тем не менее следовало бы показать, что из общих условий равновесия термодинамической системы вытекают все три соотношения (3.20). Формальное доказательство этого состоит в следующем. Рассмотрим обе фазы в совокупности как изолированную систему и примем для определенности, что общий объем системы, равный сумме объемов обеих фаз и общая энтропия системы,  [c.201]

РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ - состояние термодинамич. системы, в к-рое она самопроизволь но приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии теплопроводность, диффузия, хим. реакции и др. В состоянии Р. т. параметры системы не меняются со временем (строго говоря, те из параметров, к-рые не фиксируют заданные условия существования системы, могут испытывать флуктуации — малые колебания около своих ср. значений). Изоляция системы не исключает апредел.  [c.195]

РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ — состояние термодинамич. системы, в к-ром ее параметры не меняются со временем в таком состоянии системы отсутствуют процессы, сопровождающиеся диссипацией эпергии, напр, потоки тепла или химич. реакции. С микроскопической точки зрения, Р. т. представляет собо11 состояние динамического или подвижного равповесия, так что равповесные значения термодинамич. параметров, строго говоря, пе являются абс. фиксированными они соответствуют статистич. средним величинам, около к-рых возможны флуктуации. Обязательное условие Р. т. — малость флуктуаций параметров системы по сравнению с их средними значениями. Поэтому, если система, помещенная в неизменные внешние условия (напр., изолированная или находящаяся в термостате), достигла состояния Р. т., то она не может самопроизвольно выйти из этого состояния (свойство устойчивости Р. т.).  [c.263]

Из состояний равновесия, определяемых условиями (1) или (2), практически реализуются лишь те, к-рые явл. устойчивыми (см. Устойчивость равновесия). Равновесия жидкостей и газов рассматриваются в гидростатике и аэростатике. с. М Тарг РАВНОВЕСИЕ статистическое состояние замкнутой статистич. системы, в к-ром ср. значения всех физ. величин, характеризующих состояние, не зависят от времени. Р. с.— одно из осн. понятий статистической физики, играющее такую же роль, как равновесие термодинамическое в терлюдинамике. Р. с. не явл, равновесным в механич. смысле, т. к. в системе при этом постоянно возникают малые флуктуации физ. величин около ср. значений. Теория Р. с. даётся в статистич. физике, к-рая описывает его при помощи разл. Гиббса распределений (микроканонич., канонич. или большого канонического) в зависимости от типа контакта системы с окружающей средой, запрещающего или допускающего обмен с ней энергией или ч-цами. В теории неравновесных процессов важную роль играет понятие неполного Р. с., при к-ром параметры, характеризующие состояние системы, очень слабо зависят от времени. Широко применяется понятие локального Р. с., при к-ром темп-ра и химический потенциал в малом элементе объёма зависят от времени и пространств, координат её ч-ц. См. Кинетика физическая. д. н. Зубарев. РАВНОВЕСИЕ ТЕРМОДИНАМИЧЕСКОЕ, состояние термодинамич. системы, в к-рое она самопроизвольно приходит через достаточно большой промежуток времени в условиях изоляции от окружающей среды. При Р. т. в системе прекращаются все необратимые процессы, связанные с диссипацией энергии теплопровод ность, диффузия, хим. реакции и др. В состоянии Р. т. параметры системы не меняются со временем (строго говоря, те из параметров, к-рые не фиксируют заданные условия существования системы, могут испытывать флуктуации — малые колебания около своих ср. значений). Изоляция системы не исключает определённого типа контактов со средой (напр., теплового контакта с термостатом, обмена с ним в-вом). Изоляция осуществляется обычно при помощи неподвижных стенок, непроницаемых для в-ва (возможны также случаи подвижных стенок и полупроницаемых перегородок). Если стенки не проводят теплоты (как, напр., в сосуде Дьюара), то изоляция наз. адиабатической. При теплопроводящих (диатермических) стенках между системой и внеш  [c.601]

В состоянии термодршамического равновесия внешнее давление должно уравновешиваться тем давлением, которое сама система оказывает на внешние тела. Если это условие не вьшолнено, объем системы будет, очевидно, либо уменьшаться, либо увеличиваться, в зависимости от того, какое из давлений больше. С точки же зрения термодинамики изменение объема должно быть таким, чтобы приводить к возрастанию энтропии. Потому что установление механического равновесия в системе есть необходимое условие установления равновесия термодинамического. Эти соображения позволяют выяснить, какой должна быть величина равновесного давления системы.  [c.80]

Прямым и исключительно важным следствием постулатов о равновесии и температуре служит вывод о том, что в равновесных системах все внутренние термодинамические свойства являются функциями внешних свойств и температуры системы. Зтим утверждается существование строго ограниченного числа независимых переменных, определяющих внутреннее состояние равновесной системы, т. е. все множество ее термодинамических свойств. Число независимых переменных, достаточное для описания термодинамического состояния равновесной сис темы, известно под названием общая вариантность равновесия, оно, следовательно, на единицу больше числа внешних переменных. Если открытая система содержит с компонентов и может изменять свой объем, то число внешних переменных будет с+, а вариантность в случае полного равновесия равняется ( + +2. Этим числом учитывается возможность существования одного теплового, одного механического и с диффузных контактов системы с окружением.  [c.23]


Подробные расчеты возможны, онечно, только если неравновесная система имеет термодинамические состояния, т. е, набор соответствующих измеримых термодинамических характеристик. Как уже отмечалось, это условие выполняется далеко не всегда (см. 4). В рассмотренном примере оно выполнено благодаря тому, что неравновескость систем1>1 заключалась в отсутствии равновесия между фазой (L) и другими фазами системы. В то же время сама по себе изолированная от других частей системы переохлажденная жидкость могла существовать сколь угодно долго, т. е. она считалась внутренне равновесной (см. с. 21). Этим объясняется возможность определения термодинамических свойств фазы (L) при любых значениях переменных Т, Р. Подобные внутренне равновесные состояния частей неравновесной системы называют метастабильными состояниями (подробнее см. 14).  [c.75]

С ростом количества вещества в капле ее химический псГтенци-ал уменьшается, а в фазе с плоской границей (г = оо) он не изменяется. Поэтому в отличие от испарения капли при испарении индивидуальной жидкости с плоской поверхности единственным результатом процесса является изменение масс фаз состояние системы меняется, а состояние фаз нет. И в общем случае при нейтральных равновесиях термодинамические силы в каждой из фаз не зависят от сопряженных с ними термодинамических координат.  [c.120]

Квазитермодинамическая теория флуктуаций явилась основой развития термодинамики необратимых процессов. Она позволяет рассматривать флуктуации в системе как флуктуацию ее термодинамического состояния, т. е. как переход системы из равновесного состояния в неравновесное. Это неравновесное состояние системы представляется (как это мы делали в 26 при обсуждении термодинамической устойчивости) как новое равновесное ее состояние с большим числом параметров bi,..., bk и соответствующих им фиктивных сопряженных сил Ai,...,Ak, удерживающих систему в равновесии.  [c.298]

Внутри каждой области существует локальное термодинамическое равновесие, однако значения параметров различны и соответствуют флуктуаци-онным отклонениям от равновесных значений для системы в целом. Эта картина соответствует так называемому состоянию неполного равновесия (квазиравновесному состоянию).  [c.299]

Как уже было отмечено в гл. 7, термодинамическое описание неравновесных систем основано на постулате о наличии локального равновесия. Термодинамические параметры (температура, давление, энтропия и т. д.) в общем случае являются функциями пространственно-временных координат. С методической точки зрения целесообразно выделить два класса неравновесных систем непрерывные и прерывные. В непрерывных системах интенсив11ые параметры состояния являются не только функциями времени, но также непрерывными функциями пространственных координат. В них протекают неравновесные процессы переноса теплоты (теплопроводность), импульса (вязкое течение), массы (различные виды диффузии) и химические реакции.  [c.195]


Смотреть страницы где упоминается термин Равновесия термодинамического состояни : [c.74]    [c.162]    [c.11]    [c.237]    [c.20]    [c.40]    [c.174]    [c.32]   
Термодинамика и статистическая физика Т.1 Изд.2 (2002) -- [ c.20 ]



ПОИСК



Равновесие термодинамическо

Равновесие термодинамическое

Равновесия термодинамического состояни однородной системы

Равновесия термодинамического состояни системы

Системы, далекие от состояния термодинамического равновесия

Состояние равновесия

Состояние термодинамического равновесия

Состояние термодинамического равновесия

Состояние термодинамическое

Термодинамические свойства на линиях равновесия фаз Метод составления единого уравнения состояния и расчета таблиц термодинамических свойств

Термодинамические состояния устойчивого равновесия — устойчивые состояния

Термодинамические функции, определяющие состояние обраI тимого равновесия системы

Фазовые превращения в однокомпонентной системе жидкость — Термодинамическое условие равновесия системы жидкость — пар в критическом состоянии



© 2025 Mash-xxl.info Реклама на сайте