Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

XYa, молекулы, линейные, симметричные потенциальная поверхность

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]


Нелинейные симметричные трехатомные молекулы. Потенциальная функция нелинейной молекулы ХУа, построенная как функция двух расстояний ХУ, принимая угол неизменным, будет точно такого же типа, как проведенная на фиг. 163 для линейной молекулы. Однако такой график гораздо менее важен, поскольку в противоположность линейному случаю при соударении + Х угол ХУ, очевидно, не остается постоянным и в довершение всего даже вблизи минимума потенциальной энергии динамика движения не может быть представлена движением точечной массы по такой потенциальной поверхности.  [c.455]

Например, рассмотрим линейную симметричную молекулу ХУз, для которой потенциальная поверхность возбужденного состояния подобна основному состоянию (фиг. 163), за исключением того, что потенциальная яма сдвинута к большим значениям и Гз и не так глубока, как для основного состояния. Тогда из минимума основного состояния при поглощении может быть достигнута точка, расположенная по вертикали на верхней поверхности, которая выше, чем плато, соответствующее диссоциации на три атома. Если это происходит, фигуративная точка, представляющая систему, соскользнет вниз до минимума и поднимется до плато, а это значит, что молекула диссоциирует в одно колебание. Фиг. 172 показывает поперечное сечение двух  [c.460]

Симметричные линейные трехатомные молекулы. Потенциальная энергия линейной трехатомной молекулы зависит от четырех координат. Обычно для того, чтобы представить эту функцию, принимают две деформационные координаты равными нулю, т. е. рассматривают движение жестко фиксированным относительно оси симметрии (оси г). При таком упрощении потенциальная энергия зависит только от двух координат и поэтому может быть представлена двумерной поверхностью в обычном (трехмерном) пространстве.  [c.445]

Несимметричные линейные трехатомные молекулы. Если представить потенциальную поверхность линейной молекулы XYZ как функцию расстояний XY и YZ (Г] и Гг) в предположении, что молекула остается линейной, то симметричную картину, как на фиг. 163 для СО, (или в общем случае для XYj), уже нельзя будет больше нолучить. В этом случае необходимо использовать различные шкалы по двум (косоугольным) осям координат, если представлять движение в молекуле как движение точечной массы но потенциальной поверхности. Из ранее приведенных формул (IV,2) и (IV,3) получается, например, для H N г" = 78°15 ж с = 0,378. На фиг. 168 схематически нанесена потенциальная поверхность для основного состояния H N. Здесь также имеются две долины, но разной глубины и наклона, одна ведущая к Н( 5) -]- N( S+), а другая — к СН( 1] ) + N( S). На рисунке не показана пересекающая поверхность, приводящая к СН( П) -[- N( .S), которая дает только триплетные и квинтетные состояния, так н е как иоверхность, приводящая к СН( П) N( D), которая дает синглетные состояния, но для больших значений Гг лежит, по всей вероятности, выше ), чем СН( 2] ) + -j-N( [c.451]

Эффект Ренера заключается во взаимодействии колебательных уровней двух электронных состояний, которые становятся вырожденными в линейной конфигурации молекулы. В многоатомных молекулах, которые редко бывают в линейной конфигурации, важное значение может иметь другой эффект, получивший название эффекта Яна —Теллера [66, 144 ]. Эффект Яна — Теллера называется динамическим, если взаимодействуют колебательные уровни двух электронных состояний, для которых поверхности потенциальной энергии молекулы пересекаются при некоторой (симметричной) конфигурации ядер [49]. Если многоатомная молекула при некоторой симметричной конфигурации ядер имеет вырожденные электронные состояния и вырождение связано с симметрией электронного гамильтониана для этой конфигурации ядер, то при определенных искажениях конфигурации ядер такие вырожденные состояния расщепляются [66]. Это явление называется статическим эффектом Яна — Теллера, а минимумы получаемых при этом потенциальных поверхностей соответствуют несимметричной конфигурации ядер. Прн рассмотрении взаимодействий между уровнями таких элек-  [c.328]


Простая потенциальная поверхность. Непосредственно очевидно, что выражение для потенциальной энергии всегда содержит не только члены второй степени смещений атомов из положений равновесия, но и члены более высоких степеней. Так же как и для двухатомных молекул, это следует из того, что при очень больших смещениях потенциальная энергия стремится к некоторой постоянной величине (соответствующей энергии диссоциации). Потенциальная энергия многоатомной энергии зависит от 2>N—6 (или ЗТУ — 5) координат, и поэтому представить ее наглядно значительно труднее, чем в случае двухатомных молекул. Если бы мы захотели найти полное представление потенциальной функции, то даже для трехатомной молекулы было бы необходимо рассматривать трехмерную гиперповерхность в пространстве четырех измерений. Однако, если для линейной симметричной трехатомной молекулы ХУ мы будем пренебрегать, например, возможностью изменения угла (т. е. предположим, что квазиупругая постоянная деформационного колебания бесконечно велика), то потенциальную энергию можно представить как двухмерную поверхность в обычном пространстве трех измерений. Выберем две длины связей X — У г, и Г.2 в качестве двух независимых координат, определяющих потенциальную функцию. Если теперь нанести значения потенциальной энергии для каждой точки плоскости г , г , то мы получим некоторую поверхность форму этой поверхности легко представить себе с помощью модели, изготовленной, например, из гипса (см. Гудив [387]). На фиг. 66, а приведена фотография такой модели для молекулы СО . Другой способ представления такой потенциальной поверхности с помощью контурных линий приведен на фиг. 66,( ).  [c.220]

Магнитное квантовое число 38 Магнитный дипольный момент 259 Матрица дипольного момента 271 индуцированного дипольного момента 275 Матричные элементы составляющих тензора полиризуемости 275. 279, 288, 291, 469 функции возмущения 234, 237 электрического дипольного момента 44, 71, 274, 288, 443 Мгновенная ось вращения асимметричных волчков 57 симметричных волчков 36 сферических иолчков 51 Междуатомные расстояния асимметричных волчков 519 изотопических молекул 424.466 линейных молекул 34, 192, 423 симметричных волчков 428, 466 тетраэдрических молекул 486 Механические модели для решения задачи о колебаниях 176 Миноры векового определителя, определение формы нормального колебания 83,87. 161, 164, 169, 172, 176 Множитель Больцмана 271, 283, 28Э Множитель, обусловленный ядерным спином, во вращательной части статистической суммы 539, 553 Модели молекулы, механические, для изучения колебаний молекулы 78,176 Модель потенциальной поверхности 219 Модификации, не комбинирующие асимметричных волчков 67, 498 влияние на термодинамические функции 538, 544, 553 линейных молекул 29 симметричных волчков 41—43, 444 тетраэдрических молекул 53, 482 Молекулы  [c.604]

Верхнее состояние без устойчивого равновесного положения. Если верхнее состояние не имеет устойчивого равновесного положения (или только очень мелкий минимум), могут возникнуть некоторые дополнительные возможности диссоциации. В качестве примера рассмотрим линейную симметричную молекулу ХУг, для которой верхнее состояние имеет такую нотенциальную поверхность, как показано на фиг. 173. Она состоит, по существу, из двух долин, которые ведут к диагонали, где имеется или хребет, как на фиг. 173, или очень неглубокая яма при больших = Гг. Математическое выражение для такой потенциальной функции, выведенное через функции Морзе для соответствующих двухатомных молекул, было недавно дано Уоллом и Портером [1258]. Если верхнее состояние электронного перехода имеет такую потенциальную функцию, то будет прямая диссоциация на У г ХУ почти для любой точки, достигаемой при поглощении света. Несомненно, из-за кривизны каждой из долин фигуративная точка не будет следовать ио почти прямой линии вдоль низа долины, а будут наблюдаться колебания с одной стороны на другую, когда точка покидает долину, как показано на фиг. 173. Тем не менее этот процесс должен быть все же классифицирован как прямая диссоциация, так как требующееся время, по существу, то же самое, как и в случае, когда нет вторичного колебания. Это вторичное колебание фигуративной точки сохраняется для больших значений Г1 (или Гг) и соответствует колебательной энергии молекулы ХУ, которая образуется в процессе диссоциации.  [c.463]


Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.220 , c.221 ]



ПОИСК



274, 323—327 симметричный

XYa, молекулы, линейные, симметричные

Линейные молекулы

Линейные молекулы потенциальные поверхности

Потенциальная поверхность



© 2025 Mash-xxl.info Реклама на сайте