Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Соединения сварные 4.303 — Испытания на вязкость разрушени свойств

Хрупкость металлов наиболее сильно проявляется при ударных нагрузках. Поэтому большинство методов для оценки сопротивляемости сварных соединений хрупким разрушениям основано на применении удара. Распространено испытание металла шва и зон сварных соединений на ударную вязкость. Надрез располагается в зоне, где производится определение свойств металла. Применение сварочных проволок соответствующего химического состава, защитных инертных газов, флюсов и обмазок при электродуговой и электрошлаковой сварке позволяют практически получать наплавленный металл шва, не  [c.255]


Влияние температуры сварки на механические свойства соединений двухфазного сплава мартенситного типа 0Т4 (3] показано на рис. 2. Давление сжатия составляло 0,98 МПа, время сварки — 60 мин. При исходной мелкозернистой равноосной структуре сплава температура 1173 К обеспечивает прочность соединений на уровне основного металла, однако образцы разрушаются хрупко в зоне сварки. При повышении температуры до 1198—1223 К прочность на разрыв практически не изменяется, но разрушение образцов при испытании происходит по основному металлу. Ударная вязкость резко возрастает. При температуре 1223 К достаточно время сварки 30 мин. Дальнейшее повышение температуры приводит к ухудшению качества соединения разрушение образцов становится хрупким из-за крупнозернистой структуры, показывая низкую ударную вязкость. Влияние давления сжатия на механические свойства сварных соединений сплава ОТ4 показано на рис. 3. Результаты показывают, что давление является весьма эффективным фактором повышения механических свойств соединений. Сварные соединения, полученные при температуре 1073—1123 К и давлении 3,9—5,9 МПа, имеют предел прочности на разрыв, соответствующий прочности основного металла, но низкую ударную вязкость. Увеличение давления до 9,8 МПа не приводит к повышению ударной вязкости до уровня основного металла. Здесь наблюдается полная аналогия с результатами сварки сплава ВТ5-1. Высокие прочностные характеристики сварных соединений сплава 0Т4 обеспечивает температура 1173 и 1223 К при давлениях соответственно 4,9 и 1,9 МПа и времени сварки 30 мин. Деформация образцов при этом составляет 6—8%. При увеличении давления сварки до 1,9—2,9 МПа время сварки сокращается до 5 мин и деформация образцов составляет примерно 4%. При снижении температуры сварки для получения качественных соединений требуется большая степень деформации.  [c.152]

Показатели механики разрушения широко применяются для расчета конструкций, подверженных опасности хрупкого разрушения (резервуары высокого давления ядерных реакторов, паровые котлы высокого давления, магистральные газопроводы), оценки дефектов сварных соединений, выбора материалов конструкций, подверженных хрупкому разрушению, анализа повреждений, а также для оптимизации свойств новых материалов. По сравнению с существовавшими ранее способами испытания для оценки характера разрушения металлических материалов (испытания на растяжение, ударную вязкость, испытание ударом на изгиб) для проведения экспериментов механики разрушения тре-  [c.81]

Разрушение сварных соединений происходит во всех случаях по основному металлу на расстоянии 3—4 мм от границы сплавления. Анализ полученных результатов и сопоставление показателей механических свойств сварнолитых, сварнокованых и комбинированных из литья и поковок сварных соединений с показателями прочности литой и кованой стали показывают, что толстостенные сварные соединения имеют сравнительно однородную прочность по всему сечению сварных соединений. По мере увеличения температуры испытания наряду со снижением прочностных свойств повышаются пластические свойства. Особенно резко повышается ударная вязкость в области рабочих температур (—580 и 600°С). Несмотря на невысокое относительное удлинение, сварные соединения из литой и кованой стали имеют исключительно высокую пластичность при деформации их в процессе испытания на загиб. Как правило, во всех случаях изгиб сварнолитых, сварнокованых и комбинированных из литья и поковок сварных соединений происходит без образования трещин и надрывов при угле загиба, составляющем 180°С. Необходимо отметить, что угол загиба для оценки пластичности таких сварных соединений является более показательным, чем относительное удлинение.  [c.135]


Основными дефектами при сварке в среде защитных газов могут быть непровары, лористость, подрезы, смещение кромок, трещины (внутренние и наружные), наплывы, натеки, прожоги, незаделанные кратеры, деформации сварных конструкций. Сварные конструкции подвергают контролю (испытанию) с разрушением конструкций и без разрушения. Испытания с разрушением конструкций или образцов дают возможность определить механические прочностные данные металла шва и сварного соединения (временное сопротивление, ударную вязкость) и пластические свойства (твердость, относительное удлинение, относительное сужение, угол загиба).  [c.200]

Пленка ПК-4. Пленка ПК-4 сравнительно плохо сваривается из-за специфических особенностей материала как в отношении большой ориентации в поперечном направлении и способности материала увлажняться, так в отношении узкого интервала температур плавления полимера и низкой вязкости расплава. При сварке двусторонним контактным нагревом материал сварного шва и околошовной зоны характеризуется хрупкостью практически полностью теряет способность удлиняться при растяжении и в значительной степени теряет прочность. Это имеет место даже при оптимальных режимах сварки температура 212—218° С, продолжительность 10—15 сек. Практически максимальная прочность сварных соединений на сдвиг составляет 850—900 кГ/см (85—90 Мн/мР-), а прочность на раздирание не превышает 300—350 кГ/см (30—35 Мн/м ). Прочность исходного материала при одноосном статическом растяжении в поперечном направлении составляет 1800 кГ/см (180 Мн1м ), в продольном — 600 кГ/смР- (60 Мн1м ). При сварке пленки в поперечном направлении сварные соединения имеют сборки в околошовной зоне. Соединения, полученные сваркой токами высокой частоты, мало отличаются по свойствам от рассмотренных выше. Разрушение соединений при испытании на сдвиг и раздирание всегда происходит в околошовной зоне практически без деформации материала прочность на сдвиг несколько выше, чем при сварке теплоносителями. Соединения из пленки ПК-4, сваренные ультразвуком, отличаются более высокой прочностью, однако, и в этом случае сварные соединения не равнопрочны основному материалу.  [c.63]

Вторая особенность определения хладостойкости сварных соединений состоит в оптимизации условий сварки. Ориентируясь на наименее хладостойкую зону, варьируют режимы сварки, чаще всего погонную энергию, добиваясь наилучших показателей по ударной вязкости. Существуют методы испытаний, использующие образцы, по форме и размерам близкие к натуральным сварным соединениям или даже узлам. Они позволяют оценить агрегатную сопротивляемость соединения или сварного узла. При испытании таких образцов определяют вторую критическую температуру Гкр , при которой Оср.р = ао,2- Следует заметить, что в лабораторных условиях сварные узлы обычно дают более низкие критические температуры из-за малого числа испытываемых образцов. Рассеяние свойств металлов, режимов сварки, форм концентраторов, а главное, их радиусов приводит на практике к тому, что отдельные экземпляры изделий имеют более высокую критическую температуру хрупкости. Чтобы выявить свойства сварных узлов при температуре выше Ткрг, определяют пластичность как при низких, так и при более высоких температурах. Значения температуры, при которых регистрируются стабильные высокие результаты по пластичности, обеспечивают максимально возможные механические свойства. При наличии отдельных выпадов низкой пластичности данная температура не может рассматриваться как исключающая хрупкие разрушения.  [c.172]


Смотреть страницы где упоминается термин Соединения сварные 4.303 — Испытания на вязкость разрушени свойств : [c.254]    [c.319]    [c.59]    [c.347]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.2 , c.46 , c.47 ]



ПОИСК



Вязкость Испытания

Вязкость разрушения

Испытание без разрушения

Испытания на вязкость разрушени

Испытания на вязкость разрушения

Испытания сварных соединений

Разрушение сварного шва

Разрушение сварных соединений

Разрушение свойства

Свойства сварных соединений

Соединение сварное—Испытания на вязкость разрушения

Соединение сварное—Испытания свойств

Соединения Свойства

Соединения сварные 4.303 — Испытания на вязкость разрушени



© 2025 Mash-xxl.info Реклама на сайте