Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ритца метод система кинематическая

Здесь представим только общие соображения по расчету нелинейных систем, поскольку эта тема выходит за рамки данной работы. Нелинейные задачи деформирования стержней, пластин и оболочек весьма разнообразны и каждая задача требует индивидуального подхода. Однако, если нелинейные модули образуют целостную систему, то для узловых точек (линий) всегда будут справедливы уравнения равновесия между статическими параметрами и уравнения совместности перемещений между кинематическими параметрами. Это значит, что топологическая матрица С в алгоритме МГЭ для нелинейных систем будет формироваться из анализа матриц X ж Y точно так же, как для упругих систем. Основные же трудности решения нелинейных задач заключаются в определении внутреннего содержания матриц А В, т.к. построить фундаментальные функции нелинейных дифференциальных уравнений за небольшим исключением не удается. В этой связи получили развитие различные подходы к решению нелинейных краевых задач [83]. К первому направлению относятся проекционные и вариационные методы типа методов Бубнова и Ритца, методы конечных разностей и конечных элементов. Этими методами нелинейные краевые задачи сводятся к системам нелинейных  [c.512]


Метод Ритца требует от аппроксимирующих функций лишь выполнения кинематических условий на поверхности тела (сходимость процесса в общем случае не выяснена). Если же аппроксимирующие функции выбрать так, чтобы они удовлетворяли не только кинематическим, но и статическим (а в общем случае также и динамическим) условиягл на поверхности тела, то поверхностные интегралы в уравнениях (3.6.1), (3.7.1), (3.7.3) исчезают и соответствующие системы уравнений упрощаются. Для этого метода—метода Бубнова — Галёркина, решается положительно вопрос о сходимости процесса, т. е. с увеличением числа  [c.74]

Метод Бубнова-Галеркина, как и метод Ритца, позволяет получить приближенное решение задачи о собственных колебаниях оболочек. Согласно этому методу строится система координатных функций удовлетворяющая как кинематическим, так и динамическим 1раничным условиям, в виде  [c.218]

Решение вариационного уравнения Лагранжа по способу выбора аппроксимирующих функций может быть выполнено методом Ритца, Галеркина, Треффца и др. Метод Ритца требует от аппроксимирующих функций только лишь выполнения кинематических условий на поверхности тела. Сходимость процесса в общем случае не выяснена. Если же аппроксимирующие функции выбрать так, чтобы они удовлетворяли не только кинематическим, но также и статическим (динамическим) условиям на поверхности тела, то поверхностные интегралы в уравнениях (12), (18), (20) исчезают и соответствующие системы уравнений упрощаются. Этот метод носит название метода Галеркина. Следует отметить, что для метода Галеркина решается положительно вопрос о сходимости процесса, т. е. с увеличением числа аппроксимирующих функций до бесконечности получается точное решение задачи. В методе Треффца аппроксимирующие функции выбираются так, чтобы объемный интеграл в уравнениях (12), (18), (20) тождественно обращался в нуль. Для метода Треффца сходимость процесса доказана.  [c.23]


Численные методы в теории упругости и пластичности (1995) -- [ c.56 , c.230 ]



ПОИСК



Метод систем

Ритц метод

Ритца

Ритца метод

Ритца система

Система кинематическая

Система кинематически



© 2025 Mash-xxl.info Реклама на сайте