Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Монохроматическое излучени

НОЙ резки дана технологическая система (ТС) станок М-36М, приспособление — двухстепенной манипулятор, инструмент — лазер на Oj, мощность 1 кВт, заготовка — лист Ст.З. Комплекс состоит из блока контроля и управления лазера / силового блока лазера пульта управления 3 лазера на СО 4, генерирующего вынужденное непрерывное монохроматическое излучение с длиной волны X = 10,6 мкм оптико-механического блока 5 опорного стола 7 робота 8, обеспечивающего закрепление и перемещение по двум координатам заготовки 6, и транспортной системы 9, обеспечивающей удаление готовых деталей.  [c.301]


В гл. 1 отмечалось, что визуальными измерениями температуры пользовались уже в конце 19-го столетия. Такой способ измерения был введен в МТШ-27. Уже с самого начала стало ясно, что пирометр монохроматического излучения представляет собой удобный, высоко воспроизводимый и точный прибор измерения температуры. Доступность ламп с угольной, а позднее с вольфрамовой нитью привела к созданию пирометра с исчезающей нитью. Хотя характеристики ламп с вольфрамовой нитью во многих отношениях были существенно лучше характеристик угольных ламп, последние продолжали использоваться в пирометрах с исчезающей нитью для измерения низких, до 650 °С температур вплоть до 1940 г. Преимущество угольной нити в этом случае связано с ее большой излучательной способностью, а следовательно, и хорошими цветовыми характеристиками, когда она рассматривается без цветного фильтра на фоне изображения черного тела.  [c.310]

Закон Кирхгофа остается справедливым и для монохроматического излучения. Отношение интенсивности излучения тела при определенной длине волны к его поглощательной способности при той же длине волны для всех тел одно и то же, если они находятся, при одинаковых температурах, и численно равно интенсивности излучения абсолютно черного тела при той же длине волны и температуре, т. е. является функцией только длины волны и температуры  [c.466]

Монохроматическое излучение — электромагнитное излучение одной определенной частоты,  [c.17]

Для технологических применений энергии света необходима его фокусировка на минимально возможной площади, что в случае полихроматического излучения неосуществимо. При монохроматическом излучении теоретически диаметр сфокусированного луча лежит в пределах 1,0...0,4 мкм, но отсутствие идеальной монохроматичности и когерентности луча может несколько увеличить этот диаметр. Монохроматический свет достаточной интенсивности получить при помощи обычных источников не представляется возможным.  [c.118]

В заключение, укажем, что эшелоны используются только при строго монохроматическом излучении.  [c.154]

Таким образом, при прохождении параллельного пучка монохроматического излучения с объемной спектральной плотностью w(v) через слой вещества толщиной dx и единичного поперечного сечения изменение интенсивности выразится следующим образом  [c.380]

Более серьезен вопрос о возможности создания монохроматического излучения. Конечно, понятие монохроматической волны вида (1.23) несколько идеализировано. Монохроматическая волна рождается гармоническим колебанием, которое длится вечно, тогда как любое реальное колебание, график которого представлен на рис. 1.8, не является гармоническим, но чем больше I <2 по сравнению с периодом колебаний Т, тем в большей степени этот импульс походит на монохроматическую волну. Легко показать, что чем больше т, тем меньше интервал частот Ду, соответствующий данному излучению [Av 1/т, см. (1.6)].  [c.33]

Раньше мы исходили из представления о строго монохроматическом излучении, порождаемом колебаниями вполне определенной частоты (И = 2пс/ /.. Но в реальных экспериментах используют источники света, излучающие в достаточно широком интервале частот с той или иной степенью монохроматичности излучения. Охарактеризуем степень монохроматичности величиной А>. — интервалом длин воли ( от /. до 4 А/.), в котором сконцентрировано излучение.  [c.212]


Легко сообразить, под каким углом будет наблюдаться первый минимум излучения порядка т для длины волны /-2. Известно, что между двумя главными максимумами монохроматического излучения располагается N — минимум. Поэтому для условия возникновения первого минимума имеем  [c.320]

Но кроме учета потерь света на поглощение, отражение или рассеяние нужно помнить о том, что те или иные приемники радиации регистрируют разные фотометрические характеристики излучения. Почернение фотопластинки пропорционально освещенности в фокальной плоскости кам( рного объектива спектрографа, а фотоумножитель, термопара и другие измеряют световой поток на выходе монохроматора. Поэтому, обсуждая светосилу спектрального прибора, нужно строго оговорить условия эксперимента. В частности, важно знать, исследуется ли источник, испускающий сплошной или линейчатый спектр, измеряется ли световой поток или освещенность и т.д. В качестве примера ограничимся кратким разбором светосилы спектрографа при исследовании монохроматического излучения.  [c.326]

Для того чтобы найти W orj,( ) мощность монохроматического излучения, поглощаемую осциллятором, вычислим интеграл вида  [c.418]

В других, более тонких, интерференционных опытах (см. ниже) монохроматизация света при помощи светофильтров недостаточна, и надо прибегать к иным способам получения монохроматического излучения.  [c.76]

Создав источник света, в котором монохроматическое излучение можно весьма хорошо воспроизвести, мы получаем возможность получать воспроизводимый эталон длины. Выразив нормальный метр в длинах волн какой-либо линии такого источника, мы можем заменить эталон нормального метра подобным эталонным источником света.  [c.143]

Для того чтобы источник испускал достаточно монохроматическое излучение с хорошо воспроизводимой средней длиной волны, нужно по возможности устранить все причины, возмущающие излучение. Свечение должно вызываться в парах низкого давления во избежание возмущений вследствие соударений атомов и при небольшом разрядном токе для ослабления возмущающего действия электрических полей (эффект Штарка), обусловленных электронами и ионами пара при значительной их концентрации. Наиболее трудно устранить влияние эффекта Допплера (см. 128), вызванного тепловым движением излучающих атомов, и осложнения, связанные со структурой излучающих атомов. Для ослабления эффекта Допплера желательно иметь в качестве излучателя вещество с атомами возможно большей массы, обладающее необходимой упругостью пара при возможно низкой температуре (см. 22). Сложность излучаемых  [c.143]

Рис. 9.17 наглядно показывает уменьшение ширины главных максимумов (увеличение их резкости) по мере роста N. В хороших решетках N достигает 10 , благодаря чему спектр, изображаемый такой решеткой, состоит из очень резких линий, если источник испускает достаточно монохроматическое излучение.  [c.199]

Методы, указанные в предыдущем параграфе, позволяют исследовать характер спектра рентгеновского импульса даже в том случае, когда импульс является белым , т. е. дает сплошной спектр. Такой характер имеет спектр рентгеновских лучей, получающихся в обычных условиях в рентгеновской трубке при торможении электронов ударами об анод. Изменение скорости электрона происходит при этом случайным путем, и образующееся излучение представляет совершенно неправильный импульс, эквивалентный совокупности разнообразных, длин волн. Однако наряду с такими импульсами появляется и гораздо более монохроматическое излучение. При бомбардировке анода электронами определенной скорости наблюдается следующее явление при некоторой их скорости, величина которой определяется веществом анода, последний становится источником  [c.412]

Частота или период испускаемого почти монохроматического излучения представляет собой характеристику тех внутриатомных процессов, которые обусловливают испускание. В нашем распоряжении нет методов непосредственного измерения этих частот ). Они определяются нами на основании измерений с и Х . Следует, однако, иметь в виду, что длина волны или частота наблюдаемого света может не совпадать с соответствующими длинами волн или частотами света, излучаемого атомом. Точнее, воспринимаемая частота или длина волны зависит не только от внутриатомных процессов, их обусловливающих, но также и от той системы координат, с которой связаны наблюдающие аппараты. Частота волнового процесса будет различной, если ее оценивать с помощью аппаратов, неподвижных относительно источника или движущихся по отношению к нему.  [c.432]

Опытное исследование строения атома показало, однако, что указанная модель не верна и атом состоит из положительного заряда (ядра) очень малого диаметра (меньше 10" см), вне которого движется соответствующее число электронов. Сила, удерживающая каждый электрон, конечно, не будет иметь вид —Ьг и окажется гораздо сложнее. Вопрос о том, каким образом при таком расположении зарядов возможно почти монохроматическое излучение, мы оставляем пока в стороне. Причина лежит очень глубоко и заключается в том, что ни излучение атомов, ни поведение зарядов внутри атомной системы не подчиняются законам классической механики и электродинамики, установленным при изучении макроскопических объектов. Для правильного описания таких внутриатомных, микроскопических процессов надо обратиться к законам, установленным квантовой теорией, по отношению к которым макроскопические законы являются лишь первым приближением, достаточным  [c.550]


Уже неоднократно указывалось, что идеальное монохроматическое излучение представляет собой фикцию и что в реальных случаях излучение всегда соответствует некоторому интервалу длин волн. Правда, излучение разреженных газов, поставленных в специально благоприятные условия, может довольно близко подходить к этому воображаемому случаю так, наблюдаются спектральные линии , в излучении которых представлены со сколько-нибудь измеримой интенсивностью длины волн, заключенные в интервале, не превышающем нескольких тысячных ангстрема. Еще более монохроматично излучение оптических квантовых генераторов, но и здесь энергия сосредоточена в конечном, хотя и очень малом спектральном интервале (см. 228). В большинстве же случаев излучение атомов гораздо сильнее отличается от монохроматического и представляет собой набор излучений, длины волн которых варьируют в пределах нескольких сотых и. даже десятых ангстрема. При повышении давления пара линии излучения  [c.571]

В соответствии с этим и излучение заряда, выполняющего такое усложненное движение, становится более сложным его можно представить как совокупность трех монохроматических излучений различной частоты (V — Ау, у, у + Ау), которые можно разделить при помощи соответствующего спектрального аппарата.  [c.624]

Для объяснения линейчатого спектра, испускаемого изолированным атомом, следовало предположить, что электрон в излучающем атоме совершает (почти) гармонические колебания, которые согласно классическим законам и обусловливают почти монохроматическое излучение. Поэтому на основании вида атомных спектров следовало предположить такое устройство атома, при котором электроны, входящие в его состав, способны совершать гармонические колебания, т. е. удерживаются около положения равновесия квазиупругой силой вида / = — кх, где к — постоянная, ах — отклонение электрона от положения равновесия.  [c.718]

Модель, предложенная Резерфордом, покоится на твердых экспериментальных данных, полученных из опытов с рассеянием а-частиц, и, по-видимому, необходима для объяснения этих опытов. Но, вместе с тем, она не только не объясняет спектральных закономерностей, но даже не в состоянии объяснить самого факта испускания атомом монохроматического излучения, если описывать процессы в такой системе, опираясь на классические законы механики и электродинамики.  [c.720]

Всякое испускание или поглощение излучения должно соответствовать переходу из одного стационарного состояния в другое. При таких переходах испускается (или поглощается) монохроматическое излучение, частота которого V определяется соотношением  [c.722]

Здесь и (со) со — энергия монохроматического излучения, в котором находятся атомы.  [c.738]

Когерентное усиление света средой с инверсной заселенностью энергетических уровней определило возможность использовать такую среду для генерации направленного потока монохроматического излучения.  [c.779]

Благодаря высокой когерентности гелий-неоновый лазер служит превосходным источником непрерывного монохроматического излучения для исследования всякого рода интерференционных и дифракционных явлений, осуществление которых с обычными источниками света требует применения специальной аппаратуры. Многочисленные варианты гелий-неонового л,азера нашли весьма разнообразные применения в биологических исследованиях, в системах лазерной связи, в голографии, машиностроении и многих других областях естествознания и техники.  [c.794]

В предыдущих параграфах, посвященных описанию принципа действия и конкретных схем лазеров, основное внимание концентрировалось на энергетической стороне дела, а именно, на методах образования достаточно большой инверсной заселенности и на усилении поля в активной среде. Существенную роль при этом играл резонатор, зеркала которого отражали падающий на них свет в активную среду и тем самым способствовали достижению порога генерации. Однако, помимо указанной функции, резонатор выполняет и другую — формирует пространственно когерентное и монохроматическое излучение.  [c.794]

Если усиление в среде компенсирует потери при отражениях, т. е. г ехр [a(oj)L] = 1, то при выполнении интерференционного условия интенсивность обращается в бесконечность. Последнее означает бесконечную спектральную плотность излучения для частот, задаваемых (228.3), т. е. генерацию монохроматических излучений с указанными частотами. Полная же интенсивность определяется эффектом насыщения и находится из условия a( o)L = = —In г, что было уже выяснено в 225.  [c.798]

Вывод этих уравнений достаточно прост и основывается на следующих соображениях если твердое тело находится в кристаллическом состоянии, то обязательно имеется направление, вдоль которого все идентичные по свойствам узлы располагаются параллельными рядами и в каждом таком ряду они связаны трансляцией а. Если на такой ряд направить под произвольным к нему углом ао параллельный пучок монохроматического излучения с длиной волны % (рис. 1.37),. то отражение будет происходить только в тех направлениях, для которых все взаимно складывающиеся отражения от узлов, связанных между собой трансляцией а, находятся в одной фазе. Этс возможно лишь в том случае, если разность хода между волнами рассеянными от двух соседних узлов А=ЛС—5D (рис. 1.37), равна целому числу Длин волн, т. е.  [c.39]

При съемке рентгенограмм от поликристаллов всегда используют монохроматическое излучение. Образец неподвижен.  [c.49]

Метод вращения кристалла. Используют монохроматическое излучение определенной длины волны Я. Кристалл вращают вокруг оси, направление которой найдено методом Лауэ. С помощью сферы Эвальда и обратной решетки легко объяснить получающуюся дифракционную картину (рис. 1.46). Пусть обратная решетка вращается, а сфера Эвальда неподвижна. В момент, когда какой-либо узел обратной решетки касается поверхности сферы Эвальда, для него выполняется интерференционное уравнение (S—So)/X=H, и в направлении, например, ОР, происходит отражение.  [c.50]

Комплекс состоит из позиционного стола /, на котором закрепляется плготовка (если специальное зажимное приспособление) н обеспечивается продольное движение, оптико-механического блока 2, и состав которого входят механические привод ,г и система липз и зеркал, обеспечивающая подачу сфокусированного луча Г зону обработки лазера на СО., генерирующего вынужденное непрерывное монохроматическое излучение с длиной волны к 10.6 мкм (генерирующее устройство, ) блока контроля н управления лазерного комплекса 4 силового блока 5 лазера.  [c.303]

Чем уже линия, тем при большей разности хода А сохранится отличная от нуля видимость интерференционной картины. Дли монохроматического излучения видимость не должна зависег.ч от разности хода и изобразится прямой линией (V = 1), парал лельной оси абсцисс.  [c.232]

Несколько изменим постановку задачи, приблизив ее к изучаемой проблеме. Пусть осциллятор находится в равновесии с электромагнитным полем равновесного излучения, изотропно заполняющим при некоторой температуре замкнутую полость. Тогда осциллятор будет совершать не свободные, а вынужденные колебания, т.е. он не только излучает энергию, но и поглощает ее из окружающего пространства. Для простоты будем рассматривать колебания зарядов под действием монохроматического излучения частоты m. В этом случае вынуждающую силу запишем как реальную часть Re F t) = Re qEox e " == qEox os at. Тогда уравнение движения имеет вид  [c.418]


Формально такое неестественрюе распределение атомов по энергетическим уровням, называемое инверсией заселенности, может бьггь характеризовано введением некой отрицательной температуры. Однако представляется сомнительной целесообразность использования такого термина для описания этого сугубо неравновесного процесса. Важно отметить, что для создания инверсной среды всегда требуется дополнительная энергия, необходимая для перекачки атомов на избранные возбужденные уровни, заселенность которых затем уменьшается в основном за счет вынужденного излучения. В определенных у( ловиях опыта этот процесс может быть использован для когерентного усиления сигнала или генерации почти монохроматического излучения.  [c.430]

При распространении монохроматической волны мы всегда можем найти геометрическое место точек, находящихся в однбй фазе. Эта совокупность точек представляет собой поверхность, называемую фронтом волны. В частности, поверхностью общей фазы, т. е. фронтом волны, явится также и поверхность, все точки которой одновременно испытывают возмущение, вышедщее из источника в некоторый момент /. Это последнее определение фронта волны удобно применять и в том случае, когда мы имеем дело с совокупностью монохроматических волн, выходящих из источника с разными фазами (например, монохроматическое излучение многих независимых атомов), или когда источник посылает немонохроматическую волну (импульс).  [c.40]

Чувствительность глаза к свету различной длины волны можно охарактеризовать кривой видности. Абсциссами этой кривой служат длины волн К, а ординатами — относительные чувствительности глаза щ, т. е. величины, обратно пропорциональные мощностям монохроматического излучения, дающим одинаковые зрительные ощущения. Несмотря на субъективность таких оценок, воспроизводимость их достаточно хороща, и кривая видности, как показывают измерения, не сильно меняется при переходе от одного наблюдателя к другому. Лишь у немногих людей глаза заметно отклоняются от нормы.  [c.51]

Таким образом, эшелон может работать только при очень монохроматическом излучении. Расстояние между главными дифракционными максимумами соседних порядков, т. е. изменение ф при изменении т на единицу, очень невелико. Из формулы (49.1) имеем бф = X/s. Все эти дифракционные максимумы имеют заметную интенсивность только в пределах центрального максимума, обусловленного одной щелью (ср. 44 и 46). Угловая ширина этого максимума есть Аф = 2X/S, ибо ширина щели равна s. Таким образом, в пределах поля заметной яркости шириной Аф может укладываться только один или два максимума соседних порядков, ибо расстояние между ними бф = ИгАф (рис. 9.26).  [c.211]

Световая волна в вакууме представляет собой переменное электромагнитное поле высокой частоты, распространяющееся с постоянной скоростью (с = 2,9979-10 см/с), не зависящей от частоты. Последнее обстоятельство может считаться установленным с большой степенью достоверности наблюдениями над астрономическими явлениями. Так, исследование затмения удаленных двойных звезд не обнаруживает никаких аномалий в спектральном составе света, доходянщго до нас в начале н конце затмений. Между тем затмение звезды или выход ее из тени своего спутника означает обрыв или начало распространения светового импульса, далеко не монохроматического и могущего рассматриваться как результат наложения многих монохроматических излучений. Если бы скорость этих излучений в межпланетном пространстве была различна, то импульс должен был бы дойти до нас значительно деформированным. Например, предположим для простоты, что этот импульс можно уподобить двум почти монохроматическим группам, синей и красной , и примем, что скорость распространения красной группы больше, чем синей мы должны были бы наблюдать при начале затмения изменение цвета звезды от нормального к синему, а при окончании его — от красного к нормальному. При огромных расстояниях, отделяющих от нас двойные звезды, даже ничтожная разница в скоростях должна была бы дать заметный эффект. В действительности же такой эффект не имеет места. Так, наблюдения Aparo над переменной звездой Алголь привели его к заключению, что разность между скоростью распространения красного и фиолетового излучения во всяком случае меньше одной стотысячной величины самой скорости. Эти и подобные наблюдения заставляют признать, что дисперсия света в межпланетном пространстве ) отсутствует. При  [c.538]

Так, Вуд, освещая пары йода, состоящие из молекул J.2, монохроматическим излучением рт утной лампы, обнаружил, что испускается крайне сложный спектр, состоящий из очень большого числа отдельных линий, точнее, пар линий, длины волн которых отличались приблизительно на 2 А. Эти пары представляют правильную совокупность, и расстояния между ними соответствуют разности длин волн в несколько десятков ангстрем. Полученная таким образом структура имеет большое сходство с системой полос, характерных для полосатого спектра, причем каждая полоса представлена двумя линиями. Замечательно, что освещение монохроматическим светом другой длины волны привело к возбуждению сходного сложного спектра, все длины волн которого были несколько изменены. Если же освещение производилось не только монохроматическим излучением, а более широким участком спектра (в несколько десятых ангстрема), то спектр испускания становился гораздо сложнее.  [c.750]

При возбуждении отдельными монохроматическими излучениями можно особенно отчетливо наблюдать случаи отступления от правила Стокса. На рис. 39.5 изображен такой случай. Защтрихованная область, соответствующая нарушению правила Стокса, называется  [c.754]


Смотреть страницы где упоминается термин Монохроматическое излучени : [c.238]    [c.17]    [c.115]    [c.383]    [c.69]    [c.318]    [c.320]    [c.350]    [c.795]   
Теплотехнический справочник (0) -- [ c.307 ]

Теплотехнический справочник Том 1 (1957) -- [ c.307 ]



ПОИСК



Закон Бугера для монохроматического излучения

Излучение Интенсивность Световая монохроматическое

Излучение монохроматическое

Излучение монохроматическое

Интенсивность излучения монохроматическая

Интенсивность излучения монохроматического, определение

Обнаружение монохроматического излучения в тепловом шуме методом бинарного квантования с последующим накоплением

Плотность излучения объемная монохроматической волны

Рентгеновское излучение монохроматическое

Стандартный источник, континуум монохроматическое излучени



© 2025 Mash-xxl.info Реклама на сайте