Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

196—199 — Химическое полирование 938, 939 — Химическое травление

В отдельных случаях весьма эффективным способом снижения коррозионного разрушения керамических материалов является обработка поверхности механическая (шлифование или полирование), химическая (травление), термическая или химико-термическая. Применяют также защитные покрытия и обмазки.  [c.48]

Хотя химическое полирование проходит без использования тока, оно имеет определенную общность с электрохимическим полированием. Применяемые в первом случае растворы содержат, наряду с компонентами, растворяющими металл, также компоненты, способствующие образованию на его поверхности пассивирующей пленки, ингибирующей процесс травления. Например, при полировании меди в фосфорно-азотнокислой смеси фосфорная кислота и азотистая, которая образуется в результате частичного восстановления нитрат-ионов, стимулируют растворение металла, а азотная — его пассивацию. Вводимые в некоторые растворы добавки органических соединений участвуют в процессе путем избирательной адсорбции на поверхности металла. Можно полагать, что эффект полирования достигается при оптимальном  [c.73]


Для получения высокой разрешающей способности необходимо также применение тонких образцов, которые можно получить электролитическим полированием, химическим травлением или механической притиркой между двумя параллельными плитами с использованием тонких абразивных порошков или пасты. В случае использования изотопов с мягким излучением (С , N1 , [Н ) можно применять также толстые образцы, поскольку излучение в основном поглощается веществом и в излучении участвуют только поверхностные слои исследуемого образца.  [c.310]

При травлении литой меди рекомендуют протирать поверхность шлифа раствором, состоящим из 40 ч. концентрированного аммиака и 10 ч. 3%-иой перекиси водорода. Этим раствором можно также осуществлять химическое полирование.  [c.187]

На поверхности сплавов ртути образуется пленка хлорида ртути. Поэтому структуру этих сплавов лучше всего можно выявить химическим полированием. Чтобы сделать видимыми отдельные фазы в различных амальгамах, например ртуть—медь и ртуть— олово, следует применять реактивы для травления, действующие на неблагородные компоненты сплава (например, для сплавов ртуть—медь—кислый раствор хлорного железа).  [c.253]

Если предположить, что скорость травления одинакова во всех направлениях, как это, например, имеет место при химическом полировании, то процессы образования и движения ступеней должны иметь низкие энергии активации, что приводит к сглаживанию неровностей поверхности.  [c.21]

Однако изучение тонких поверхностных слоев по стандартной рентгеновской методике является малоэффективным. Толщина слоя металла, обычно участвующего в отражении и формирующего картину структурных изменений, находится в пределах 10" — 10" см. Поэтому структурные изменения в тонких приповерхностных слоях анализируются с помощью электронографического метода. Используя дифракцию электронов, можно исследовать слои порядка 10" —IQ- см и меньше. Для анализа более толстых слоев металла в этом случае прибегают к химическому или электролитическому травлению. Наилучшим способом снятия слоев является электролитическое полирование, при котором не происходит, как при химическом травлении, возможного вытравливания структурных составляющих и снимается равномерный слой металла по всей поверхности. Однако сам процесс снятия слоя приводит к перераспределению имеющихся в металле напряжений, а также к возникновению значительных микронапряжений. Следует особо подчеркнуть, что при неравномерном распределении структурных изменений по глубине исследуемого объекта, что всегда имеет место при трении, любая дополнительная обработка поверхности приводит к неоднозначным результатам исследования и становится вовсе недопустимой при оценке структурных изменений, вызванных влиянием ПАВ различного рода смазок.  [c.17]

Процесс полирования состоит из следующих операций 1) предварительного шлифования абразивами, 2) химического травления для удаления окалины и прижогов, 3) полирования, 4) промывания в холодной воде, 5) промывания в щёлочи для окончательного удаления кислоты, 6) промывания в проточной холодной воде, 7) протирки и сушки.  [c.60]


При травлении металлов часто происходит избирательное разрушение поверхностного слоя, особенно при химическом травлении. Поэтому наиболее пригодным для равномерного удаления поверхностного слоя является электролитическое травление и полирование.  [c.6]

Бронзы, Латуни, — Обозначения 194 — Полуфабрикаты 196—199 — Химическое полирование 938, 939 — Химическое травление 934—936  [c.1021]

Очистка химическим травлением и полированием основана на способности кислот и щелочей растворять окислы некоторых металлов. Время выдержки в растворе определяется состоянием поверхности и требованиями сохранения точности размеров деталей.  [c.207]

Существуют следующие способы очистки деталей обезжиривание (в органических растворителях и щелочах, химическое и электрохимическое) промывка в воде травление (химическое и электрохимическое) полирование (химическое и электрохимическое) ультразвуковая обработка термическая обработка.  [c.180]

Способы воздействия на свойства неорганических стекол определяются необходимостью нейтрализовать дефектный поверхностный слой. Их можно разделить на четыре группы механическая обработка (полирование), химическая обработка травление), термическая обработка (закалка), химико-термическая обработка. Так, закалка, при которой можно получить анизотропию свойств, и химико-термическая обработка стекла в несколько раз повышают показатели прочности и ударную вязкость, а также увеличивают термостойкость. Травление закаленного  [c.350]

Борьба с коррозией с применением защитных покрытий является наиболее распространенным способом. Его эффективность зависит не только от выбора подходящего покрытия, но и от соответствующей обработки поверхности материала. Она должна быть очищена от органических загрязнений, таких как масла и смазки, а также от ржавчины, окалины и т. п. В связи с этим подготовка поверхности состоит в мытье, обезжиривании, механической очистке шлифованием, полированием, очистке щетками или дробеструйной обработке. Чистую поверхность металла получают также химическим или электролитическим травлением в растворах кислот.  [c.495]

Приготовленные микрошлифы промывают и подвергают исследованию в нетравленом виде для оценки загрязненности неметаллическими включениями, обнаружения микроскопических пор, трещин и т. п. После изучения шлифа в нетравленом виде производится его травление для выявления микроструктуры. Для котельных материалов обычно применяется травление, представляющее собой избирательное растворение границ зерен и фаз вследствие их различных физико-химических свойств. В результате травления образуется рельеф, и при наблюдении под микроскопом сильно растворившиеся участки из-за тени или пониженной отражательной способности представляются более темными, а нерастворившиеся — более светлыми. Травящее действие реактива зависит от концентрации трави-теля и его химической активности, длительности травления и температуры реактива. Для химического травления шлифы погружают полированной поверхностью в раствор травителя либо на поверхность наносится травитель в виде капли. Продолжительность травления устанавливается экспериментально (см. табл. 2.18).  [c.56]

Бесспорным является лишь тот факт, что при химическом полировании металл должен находиться на границе активно-пассивного состояния. При достижении устойчивой пассивности процесс перехода ионов металла в раствор должен совершенно прекратиться и эффекта выравнивания поверхности не будет. В случае активного состояния растворение будет носить характер травления, при котором металл становится весьма шероховатым.  [c.71]

Шлифование и полирование разрушают кристаллы основного металла или при этом образуется окисный слой. Химическое травление или электролитическое полирование улучшают сцепляемость.  [c.611]

В цехе должны быть помещения для механической подготовки (например, для пескоструйных аппаратов, шлифования и полирования), для химической очистки деталей (травление) и для собственно электролиза и окончательного обезжиривания.  [c.631]

В большинстве случаев предпочитают глянцующие протравы, так как получаемого с их помощью глянца часто бывает достаточно для получения блестящего, гальванического покрытия. Глянцевое травление не следует смешивать с химическим полированием.  [c.667]

К специальным видам травления относятся травильные процессы, заменяющие механическую обработку, и, как правило, являющиеся более экономичными, скоростными и не требующими сложного оборудования. К ним следует отнести химическое фрезерование металлов, химическое снятие заусенцев, химическое полирование металлов, химическую маркировку и прочие процессы.  [c.76]

Очистку поверхности мелкпх изделий (часовые механизмы, детали электровакуумных приборов) проводят ультразвуком, а изделия ювелирной промышленности подвергают электрохимическому или химическому полированию. После травления изделия промывают водой, сушат и направляют для нанесения покрытий.  [c.159]

Образцы для исследования получали из механической смеси порошков. Использовали промьпнленные материалы никель ПНЭ-1, железо и кобальт карбонильные, хром восстановленный ПХС, бор аморфный, уголь активированный. Из смесей прессовали таблетки и оплавляли в вакууме (10 —10 мм рт. ст.) при 1200 — 1250 °С в течение 30 мин. Получали компактные образцы с объемной пористостью 2—3 %, из которых готовили полированные шлифы. Структуру сплавов выявляли химическим травлением. Фазовый состав контролировали металлографическим и рентгеиофазовым методами.  [c.111]


Наиболее часто применяются следующие методы подготовки поверхности электродов [28] механическая зачистка, шлифовка, катодное восстановление, электрохимическое полирование, потен-циостатическая стандартизация говерхности, химическое травление [28, 29].  [c.135]

В настоящее время структуру выявляют исключительно путем химического или электролитического травления, при этом реактив взаимодействует с полированной поверхностью шлифа. При травлении поверхность шлифа растворяется или окрашивается тонким слоем продуктов травления. Под действием реактивов в металлах и сплавах прежде всего растворяются выделения на границах зерен, имеющие иную химическую природу. Каждая фаза растворяется по-разному одна структурная составляющая растворяется в реактиве быстрее, другая — медленнее. Структура становится видимой, при этом отражательная способность шлифа испытывает изменения, которые внутри кавдой фазы одинаковы независимо от условно ориентированного воздействия реактива. Возникает рельеф, который состоит из выступающих фаз. Благодаря этому становятся видимы контуры структурных составляющих. При применении косого освещения контуры четко различимы благодаря свету и тени.  [c.15]

Травитель 4 [насыщенный раствор Fe lg]. Шрамм [2] приводит концентрированные нейтральные растворы хлорного железа. При травлении погружением и химическом полировании также применяют 10%-ный нейтральный раствор. Этот реактив особенно пригоден для выявления грубой структуры.  [c.185]

Химическая стойкость никеля затрудняет выявление его структуры, особенно никеля высокой степени чистоты. Даже для микротравления необходимы сильно концентрированные кислоты, так что специальных способов макротравления очень мало. Но сильные растворы при травлении вызывают, как правило, пре-имущественноз разъедание включений. Кроме того, при обработке на никеле образуется тонкий деформированный слой, который может быть удален только при многократном чередовании полирования и травления.  [c.211]

Структура выявляется без растворения тонко распределенных включений, таких как графит и сульфид никеля. Смешивая раствор, нужно соблюдать особую осторожность, так как при этом образуются ядовитые пары (синильная кислота). Необходимо включить тягу. Для литого монель-металла Кемпбелл [12] рекомендует уже приведенные выше реактивы Марика 9 и 10, гл. XV. А уже указанный раствор Грарда служит для травления поверхности зерен катаного и отожженного монель-металла. Также пригодны другие реактивы, например описанный реакт ш 196 (гл. XI) Норбери [13] выявляет структуру сплава никеля с медью химическим полированием на пергаменте с персульфатом аммония и добавкой гидрата окиси аммония. Раствор для травления, состоящий из 99 мл этилового спирта, 2 мл соляной кислоты и 5 г хлорного железа, называют реактивом Карапелла. Он служит для травления монель-металла, но его также применяют для никеля. Продолжительность травления колеблется от 2 до 3 с при легком втирании реактива или погружении образца в раствор.  [c.215]

По данным Шрадер, 0,5%-ный раствор Дикса и Кейта [20] рекомендуют для выявления границ зерен и линий скольжения путем чередования полировки и травления в течение одного часа. Обычная продолжительность травления для выявления микроструктуры чистого алюминия составляет 5—10 с. Рекомендуют также для выявления микроструктуры протирание шлифа в течение 15 с мягким сукном, смоченным реактивом (химическое полирование).  [c.258]

Макро- и микроструктура сплава выявляются травлением поверхности шлифов. Основные способы химическое и электролитическое травление, травящее полирование, цветное и окисиое травление.  [c.140]

Электрохимический способ полирования (или точнее глянцовки) металлов может осуществляться лишь тогда, когда не имеет места полная поляризация, но и не наступает процесс анодного травления. Состав электролита и режим обработки (электрический, температурный и по времени) должны обеспечивать разрыв поляризационной плёнки только на гребешках поверхности (где силовые линии электрического поля всегда более концентрированы) и не нарушать её в углублениях. а так как снимаемые гребешки имеют высоту два-три десятка микронов, то, очевидно, что предъявляемые требования к режиму и электролиту должны быть весьма жёсткими и различными для различных материалов (см. табл. 71). Для обеспечения наибольшей концентрации электрического поля на гребешках обрабатываемой поверхности необходимо уменьшать рассеивающую способность ванны увеличением размера катода (в некоторых случаях площадь его в 15—20 раз больше площади анода). Применяемые электролиты должны быть сильно концентрированными, чтобы не допустить химического травления обрабатываемых поверхностей.  [c.60]

Поверхность металла, спаиваемая со стеклом, должна быть обработана до шероховатости Rz20. Для обеспечения требуемой шероховатости поверхности целесообразно применять электролитическое или химическое полирование деталей. После механической обработки металлические детали химически обрабатываются обезжириванием и травлением.  [c.220]

Разработан весьма удовлетворительный метод травления образцов. Смесь, состоящую из 30 мл азотной кислоты, 2 мл плавиковой кислоты и 50 мл молочной кислоты, наносят кисточкой при комнатной температуре на поверхность образца на 1 мин или более. Фактически этот травитель применяется для химического полирования образца, а не для травления поверхности. Затем поверхность образца обрабатывают npH6jiH3HTej[bH0  [c.454]

При приготовлении образцов для металлографического исследования необходимы операции грубого шлифования, тонкого шлифования и механического полирования. Образцы плутония или богатых плутонием сплавов, предназначенные для микроскопичесиого исследования, обычно подвергают электролитическим операциям полирования и травления. Фазы и сплавы, особенно пло.чо поддающиеся электролитическому травлению, недавно с превосходными результатами были подвергнуты катодному травлению 1931. Для многих бедных плутонием сплавов вполне применимо обычное химическое травление.  [c.560]

При необходимости исследования структуры металла, чтобы не повредить шлиф, измерение твердости проводят после микроанализа. Для изучения структуры металла непосредственно на изделии и снятия пластиковых реплик проводят доводку шлифа вручную. При этом используют алмазные пасты, например марок A M 5/3 ВОМД, A M 1/0 ВОМД и т.п. Для лучшего выявления микроструктуры процессы полирования и химического травления повторяют несколько раз. Готовый шлиф промывают водой, а затем чистым этиловым спиртом и высушивают гигроскопичной тонковолокнистой бумагой, а при необходимости длительного хранения консервируют слоем обезвоженного вазелина или лака.  [c.396]

В отдельных случаях химическое травление структуру не выявляет или выявляет ее плохо. Это наблюдается главным образом тогда, когда исследуемые металлы или сплавы обладают высокой коррозионной стойкостью. В таких случаях используют избирательное воздействие реактива на поверхность образца такое же, как и при электролитическом полировании [см. раздел 2.1,4.2]. Этот процесс называют электролитическим травлением. Плотности тока при электролитическом травлении примерно в 10 раз меньше плогиостей тока, применяемых при электролитическом полировании. Во многих случаях источником тока служит 6-вольтовая батарея. В качестве катодного материала, как и при электролитическом полировании, применяют коррозионностойкие металлы (например, нержавеющую сталь). Составы некоторых из применяемых электролитов приведены в табл. 2.5.  [c.25]


Химическое или электрохимическое отделение слепка заключается в растворении поверхностного слоя образца под пленкой, разрезанной острым лезвием на квадратики. При этом не должны образовываться нерастворимые продукты травления, которые могут загрязнить слепок, и не должен разрушаться сам слепок. Преимуществоми этого способа отделения слепка являются малые деформации слепка и быстрота и простота операций отделения его. Недостаток способа — необходимость для повторного снятия слепка с того же образца проводить заново полирование и травление.  [c.33]

Доменную структуру в кристаллах ниобата бария-натрия можно обнаружить с помощью химического травления полированных поверхностей, перпендикулярных к направлению роста. В качестве травителей для этих кристаллов могут применяться плавиковая [33] или ортофос-форная кислоты [39]. Выявление структуры происходит вследствие разлиЧ ных скоростей травления доменов с противоположными направлениями вектора поляризации [40].  [c.187]

Характерная особенность контактного взаимодействия твердых тел — локализация деформации в тонком поверхностном слое, толщина которого может быть меньше 1 мкм. При этом процесс. пластического деформирования протекает в условиях относи тельно высоких температур и давлений, а тончайшие поверхностные слои обладают повышенной физической и химической активностью. В связи с этим при анализе поверхностей трения особенно важна возможность исследования методами, которые не портят поверхность и не требуют дополнительной ее обработки, как, например, при использовании просвечивающей электронной микр Ьскопии. Для исследования структурных изменений по глубине поверхностных слоев используют обычно химическое травление или электролитическое полирование. Однако процесс снятия слоев сопровождается перераспределением структурных несовершенств в металле, возникновением значительных микро-и макронапряжений. Наличие при трении градиента свойств металла по глубине зоны деформации усугубляет недостатки применения дополнительной обработки при исследовании поверхностей трения.  [c.77]

При наличии инородной пленки, препятствующей выходу дислокаций на поверхность металла, толщина слоя с повышенной плотностью дислокаций большая и будет определяться свойствами и толщиной инородной пленки. Например, в [27] приведены данные по плотности дислокаций, выявленных избирательным травлением монокристаллических образцах из алюминия с поперечным сечением 4,7X4,7 мм. Показано, что нанесение на образцы пленки хрома толщиной всего 1 мкм повышает плотность "леса дислокаций" после деформации 2,5% в 2—3 раза по сравнению с плотностью в образцах с химически полированной поверхностью и глубина слоя с повышенной плотностью дислокаций составляет 2 мм. Такое резкое увеличений толщины с1еЬг -слоя, вызываемое наличием на поверхности металла очень тонкой инородной пленки, вероятно, обусловлено различием ориентировок кристаллографических плоскостей материала и подложки и существенным несоответствием периодов решеток.  [c.12]

V — хромирование крупных деталей VI — меднение перед цементацией VII — меднение цинковых сплавов V///—меднение стальных деталей 7/I — никелирование Х - цинкование X/- хромирование . ХЯ-цинкование и кадмирование в колоколах XIII-ллбо-ратория XIV — отделение мотор-генераторов XV — отделение приготовления электролитов XVI - помещение для вытяжных вентиляторов XV//—склад ядов СУ/Я—нейтрализационная установка //i-склад химикатов и анодов М—помещение для приточной вентиляции 1 — автомат для полирования колпачков колес 2 — приспособление к полировальному станку для шлифования колпаков колес 3 — шлифовально-полировальный станок 4 - аппарат трихлорэтилена 5 — дистиллятор трихлорэтилена 5—ванна химического обезжиривания 7 — ванны теплой и горячей промывки 8 — ванна химического травления 9 - ванна холодной промывки W — ванна снятия осадков 7/ — ванна электролитического обезжиривания 12 — ванна декапирования в хромовой кислоте  [c.227]

При химическом полировании одновременно достигается выравнивание, как и при электролитическом полировании. Для травления металлов кроме водных растворов кислот, щелочей и некоторых солей оправдали себя также и расплавы солей. Однако обычг но при этом необходимо дополнительное травление в кислоте, так как в расплавах окалина иногда только разрыхляется. Примером такого травления может служить процесс Эфко-Вирго [113]. Преимущества его заключаются в следующем отпадает необходимость в обезжиривании, в механическом удалении окалины, отсутствует охрупчивание водородом, не разъедается сам металл. Таким образом, металлическая поверхность получается более качественной, чем после травления в кислоте. Один из типов декапирования состоит в обработке деталей в растворе гидрида натрия [114].  [c.668]

С их помощью устраняются имеющиеся микрошерохо-ватости. Таким путем удается удалить с поверхности нарушенные слои, которые образуются в процессе механической обработки, например, при резании, шлифовке или полировке кристалла. Если сочетать метод химического полирования с методом избирательного травления, то при известных условиях можно определить трехмерную дислокационную структуру или выявить зону деформации, полученную при механическом воздействии (в ее пространственном протяжении). Получение гладкой поверхности кристалла определяется соотношением скоростей растворения в направлениях перпендикулярно (Ул, )  [c.407]


Смотреть страницы где упоминается термин 196—199 — Химическое полирование 938, 939 — Химическое травление : [c.213]    [c.212]    [c.72]    [c.259]    [c.179]    [c.29]    [c.917]    [c.136]    [c.187]   
Справочник металлиста Том 2 Изд.2 (1965) -- [ c.934 , c.936 ]



ПОИСК



1.125 — Режимы также Травление поверхности — Химическое полирование

196—199 — Химическое полирование 938, 939 — Химическое травление подшипниковые алюминиевые и магниевые

196—199 — Химическое полирование 938, 939 — Химическое травление подшипниковые цинковы

Полирование

Полирование химическое

Травление

Травление химическое

Травленне



© 2025 Mash-xxl.info Реклама на сайте