Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Элементы теории дифференциальных уравнений и уравнений в конечных разностях

Далее излагаются элементы теории дифференциальных уравнений и уравнений в конечных разностях в объеме, необходимом для того, чтобы в дальнейшем не отсылать читателя к многочисленным источникам, сообщающим эти сведения в различном духе и с использованием различных обозначений. Здесь основное внимание уделяется вопросам решения уравнений с периодическими коэффициентами и уравнений в конечных разностях (глава 2).  [c.8]

ЭЛЕМЕНТЫ ТЕОРИИ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ И УРАВНЕНИЙ В КОНЕЧНЫХ РАЗНОСТЯХ  [c.44]

Принцип конечных разностей. Приближенное решение дифференциального уравнения в частных производных, как, например, уравнения Лапласа, может быть получено в числовом выражении путем принятия пространственного распределения или сетки значений в области и проверки, удовлетворяют ли принятые значения соответствующее уравнение и граничные условия. В случае, если эти значения не удовлетворяют уравнение, их корректируют. Для выполнения этих операций необходимо заменить бесконечно малые дифференциальные элементы элементами малыми, но конечными, а затем воспользоваться методами теории конечных разностей. Приближенное выражение можно получить для функции ф уравнения Лапласа, приняв значения ее величины в равномерно распределенных точках такими, как показано на рис. 40. Расстояние а принимается достаточно малым, чтобы изменение функции от точки к точке можно было считать линейным. Если Хо и г/о — координаты центральной точки, то в точках  [c.131]


Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]

В принципе эти методы могут быть применены к любой задаче, для которой дифференциальное уравнение или линейно, или линейно относительно приращений [44—49]. В задачах, сводящихся к эллиптическим дифференциальным уравнениям, решения получаются сразу, в то время как для параболических и гиперболических систем уравнений должны быть введены процессы продвижения во времени. Таким образом, охватывается очень широкий класс физических задач при помощи прямых или непрямых формулировок МГЭ могут быть решены, например, задачи об установившемся и неустановившемся потенциальных течениях, задачи статической и динамической теории упругости, упругопластичности, акустики и т. д. [8—49]. МГЭ может также быть использован в сочетании с другими численными методами [44], такими, как методы конечных элементов или конечных разностей, т. е. в смешанных формулировках. Соответствующие комбинированные решения почти неограниченно расширяют область применения методов, ибо МГЭ обладает четко выраженными преимуществами для областей больших размеров, в то время как методы конечных элементов являются удобным средством включения в такие системы объектов конечного размера или уточнения поведения решения в зонах быстрого изменения свойств. Более подробное сравнение особенностей этих методов будет дано в следующем параграфе.  [c.16]


Метод конечных элементов для описания сплошных сред впервые был применен в середине 50-х годов XX столетия и с тех пор завоевал известность исключительно полезного инженерного метода. Он широко применяется в гидродинамике, теории поля, при расчете сложных напряженных состояний и в других областях. О распространенности метода конечных элементов можно судить, например, по работе Норри и де Ври [9], в которой приведено более 7 тыс. ссылок, содержащих указания на его применение в различных областях науки и техники. Хотя метод конечных элементов применяется для решения тех же задач, что и метод конечных разностей, основаны они на разных идеях. В методе конечных разностей проводится разностная аппроксимация производных, входящих в дифференциальные уравнения. Математическая основа метода конечных элементов — вариационное исчисление. Дифференциальное уравнение, описывающее задачу, и соответствующие граничные условия используются для постановки вариационной задачи, которая затем решается непосредственно. С этой точки зрения метод конечных элементов представляет собой неявное применение метода Ритца на отдельных отрезках. В методе конечных элементов физическая задача заменяется кусочно-гладкой моделью. В этом смысле метод конечных элементов позволяет инженеру использовать свое интуитивное понимание задачи. Чтобы изложить метод конечных элементов во всех подробностях, пришлось бы написать специальный учебник. Здесь мы ограничимся изложением лишь основ этого метода, практическое значение которого трудно переоценить. Более подробное описание метода конечных элементов можно найти в работах Кука [21 и Зенкевича и Чен-  [c.125]


Смотреть главы в:

Механизмы с упругими связями Динамика и устойчивость  -> Элементы теории дифференциальных уравнений и уравнений в конечных разностях



ПОИСК



Конечные разности

Конечный элемент

Разность фаз

ТЕОРИЯ КОНЕЧНЫХ ЭЛЕМЕНТОВ

Теории Уравнения

Уравнение конечное

Уравнения Элементы

Уравнения в конечных разностях



© 2025 Mash-xxl.info Реклама на сайте