Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Физические уравнения механики твердого деформируемого тела

ФИЗИЧЕСКИЕ УРАВНЕНИЯ МЕХАНИКИ ТВЕРДОГО ДЕФОРМИРУЕМОГО ТЕЛА  [c.493]

В заключение отметим наиболее важные свойства материалов, которые обнаруживаются при их испытаниях. Эти свойства имеют фундаментальное значение при построении физических уравнений механики твердого деформируемого тела.  [c.32]

В первом томе содержится информация, составляющая фундамент механики твердого деформируемого тела. Подробно обсуждаются свойства конструкционных материалов, анализ напряженно-деформированного состояния в точке сплошной среды и физические уравнения в реологическом аспекте. Уделено значительное внимание проблеме предельного состояния материала в локальной области. За-  [c.35]


Вся книга посвящена экспериментам, проводившимся исследователями для изучения физической (главным образом в механическом аспекте) природы твердых тел и фактически создавшим фундамент для построения определяющих уравнений во всех ветвях механики твердых деформируемых тел, обладающих свойствами упругости, или пластичности, или вязкости, или, наконец, любой комбинацией этих свойств. При этом затронуты и вопросы взаимодействия полей механической природы (деформаций, напряжений) с температурным и электромагнитным полями.  [c.7]

Введенные выше векторы и матрицы, а также установленные связи между ними позволяют записать полную систему разрешающих уравнений для основной задачи расчета стержневых систем. Эти уравнения можно разделить на три группы. Первую группу составляют уравнения равновесия узлов и элементов под действием узловых усилий. Вторая группа является уравнениями неразрывности перемещений в узлах. Третья группа уравнений представляет собой закон упругости, связывающий между собой узловые перемещения и усилия. Такое подразделение разрешающих уравнений характерно для любого раздела механики твердого деформируемого тела. Как и сами уравнения, оно связано с механическими, геометрическими и физическими принципами, которые лежат в основе рассматриваемых задач.  [c.59]

Физическими соотношениями назовем ту группу уравнений механики деформируемого твердого тела, которые устанавливают зависимость между полями напряжений и деформаций. Обычный путь получения этих соотношений состоит в том, что по внешним проявлениям в виде зависимости изменения длины, объема тела под действием внешних сил, моментов опосредствованно устанавливается зависимость между внутренними напряжениями и локальными деформациями. Этот феноменологический путь построения физических соотношений не может претендовать на объяснение физики явления.  [c.143]

Теоретическая механика, изучающая движение и равновесие материальных тел под действием сил, является научной основой целого ряда современных технических дисциплин. Сопротивление материалов, гидромеханика, теория упругости, динамика самолета, ракетодинамика и другие технические дисциплины существенно дополняют и расширяют основные положения и законы классической механики твердого тела, изучая новые классы задач механики и в ряде случаев вводя в рассмотрение новые физические свойства тел. Уравнения теоретической механики, полученные для абсолютно твердых тел, являются необходимыми, но недостаточными для изучения движения и равнове- сия деформируемых тел.  [c.18]

Различия в модельных представлениях о свойствах тела, которые используются в каждом из перечисленных выше разделов механики деформируемого твердого тела, порождают существенные различия в методах исследования. Каждый их этих разделов механики деформируемого твердого тела имеет свою историю, свой предмет изучения и метод исследования. Именно это и дает основание рассматривать теорию упругости, теорию пластичности и теорию ползучести как самостоятельные науки. Конечно, в этих науках сохранилось и много общего -структура и содержание основных уравнений отличие связано с формулировкой физических соотношений, которыми устанавливается связь между напряжениями и де рмациями.  [c.18]


Термоупругое тело относится к системам с мгновенной обратимой реакцией. Деформации в термоупругих телах представляют собой однозначные функции Оц и Т. Таким образом, для этого случая коэффициенты Aijjnn и Сц Вц = 0) в определяющих уравнениях (2.1) представляют собой некоторые обычные функции от Oij и Т, удовлетворяющие, кроме того, условию существования полного дифференциала. К тому же выводу можно прийти, используя термодинамический метод. Дальнейшие упрощения в уравнения (2.1) привносятся при наличии свойств физической или геометрической симметрии системы (например, изотропии), малости деформаций, линейности соотношений (2.1), изотермичности процесса. В рамках таких моделей удалось найти эффективное решение многих важных задач о деформации твердых тел. Соответствующие направления в механике твердого деформируемого тела изучались в многочисленных работах советских авторов (В. В. Болотин, Л. А. Галин, Э. И. Григолюк, Н. И. Мусхелишвили, В. В. Новожилов, Г. С. Писаренко, И. М. Рабинович, А. Р. Ржаницын, Г. Н. Савин, В. И. Феодосьев и др.). Работы по этим разделам освещены в других обзорах этого тома.  [c.369]

Понятия о колебательных движениях и волнах сформулировались в начале XIX в. В то время получены линейные решения уравнений теоретической механики и гидродинамики, описывающие движения планет и волн на воде. Несколько позднее благодаря наблюдательности Д. С. Рассела [186], теоретическим исследованиям Б. Римана [97, 99] и других исследователей сформировалось понятие о нелинейных волнах. Однако, если линейные колебания и волны были весьма полно изучены в XIX в., что нашло отражение в фундаментальном курсе Д. Рэлея [177], то этого нельзя сказать о нелинейных колебаниях. Сознание того, что нелинейные уравнения содержат в себе качественно новую информацию об окружающем мире пришло после разработки А. Пуанкаре новых методов их изучения. Созданные им и другими исследователями методы интегрирования нелинейных уравнений нашли широкое применение в радиофизике [6] и механике твердых тел [73]. Более медленно нелинейные понятия и подходы входили в механику жидкости и твердого деформируемого тела. Показательно, что первые монографии, посвященные нелинейному поведению деформируемых систем, были опубликованы на-рубеже первой половины XX в. [39, 72, 107, 153]. В это же время резко возрос интерес к нелинейным колебаниям и волнам в различных сплошных средах. Сформировались нелинейная оптика, нелинейная акустика [97, 173], теория ударных волн [9, 198] и другие нелинейные науки [184, 195, 207]. В них рассматриваются обычно закономерности формоизменения волн, взаимодействия их друг с другом и физическими полями в безграничных средах. Нелинейные волны в ограниченных средах исследованы в значительно меньшей степени, несмотря на то что они интересны для приложений. В последнем случае важнейшее значение приобретает проблема формирования волн в среде в результате силового, кинематического, теплового или ударного нагружения ее границ. Сложность проблемы связана с необходимостью учета физических явлений, которые обычно не проявляют себя вдали от границ, таких как плавление, испарение и разрушение среды, а также взаимодействия соприкасающихся сред. В монографии рассмотрен широкий круг задач генерации и распространения нелинейных волн давления, деформаций, напряжений в ограниченных неоднородных сплошных средах. Большое внимание уделено динамическому разрушению и испарению жидких и твердых сред вблизи границ, модельным построениям для адекватного математического описания этих процессов. Анализируется влияние на них взаимодействия соприкасающихся сред, а также механических и тепловых явлений, происходящих в объемах, прилегающих к границам.  [c.3]

Изучению напряжений, деформаций и перемещений в пластически деформируемых телах посвящен раздел механики деформируемого твердого тела, называемый теорией пластичности [10, 12, 13, 18, 36]. Теория пластичиости решает глав1гым обра юм те же задачи, что и линейная теория упругости, но для материалов с другими физическими свойствами. Поэтому между указанными теориями имеется много общего, в частности общими оказываьзтся уравнения равновесия, зависимости между перемещениями и деформациями, уравнения совместности деформаций. Только вместо закона Гука, используемого в линейной теории упругости, в теории пластичности применяются другие физические соотношения.  [c.293]

Предлагаемая вниманию читателей книга освещает различные методы решения задач механики деформируемого твердого тела. Для иллюстрации возможностей методов выбраны задачи статики, динамики и устойчивости стержневых и пластинчатых систем, т.е. задачи сопротивления материалов, строительной механики и теории упругости, имеющих важное практическое и методологическое значения. Каждая задача механики деформируемого твердого тела содержит в себе три стороны 1. Статическая - рассматривает равновесие тела или конструкпди 2. Геометрическая - рассматривает связь между перемещениями и деформациями точек тела 3. Физическая -описывает связь между деформациями и напряжениями. Объединение этих сторон позволяет составить дифференциальное уравнение задачи. Далее нужно применить методы математики, которые разделяются на аналитические и численные. Большим преимуществом аналитических методов является то, что мы имеем точный и достоверный результат решения задачи. Применение численных методов приводит к получению просто результата и нужно еще доказывать его достоверность и оценивать величину погрепшости. К сожалению, до настоящего времени получено весьма мало точных аналитических решений задач механики деформируемого твердого тела и других наук. Поэтому приходится применять численные методы. Наличие весьма мощной компьютерной техники и развитого программного обеспечения практически обеспечивает решение любой задачи любой науки. В этой связи большую популярность и распространение приобрел универсальный численный метод конечных элементов (МКЭ). Применительно к стержневым системам алгоритм МКЭ в форме метода перемещений представлен во 2, 3 и 4 главах книги. Больпшми возможностями обладает также универсальный численный метод конечных разностей (МКР), который начал развиваться раньше МКЭ. Оба этих метода по праву занимают ведущие места в арсенале исследований. Большой опыт их применения выявил как преимущества, так и очевидные недостатки. Например, МКР обладает недостаточной устойчивостью численных операций, что сказывается на точности результатов при некоторых краевых условиях. МКЭ хуже, чем хотелось бы, решает задачи на определение спектров частот собственных колебаний и критических сил потери устойчивости. Эти и другие недостатки различных методов способствовали созданию и бурному развитию принццпиально нового метода решения дифференциальных уравнений задач механики и других наук. Метод получил название метод граничных элементов (МГЭ). В отличии от МКР, где используется конечно-разностная аппроксимация дифференциальных операторов, в МГЭ основой являются интегральное уравнение задачи и его фундаментальные решения. В отличие от МКЭ, где вся область объекта разбивается на конечные элементы, в МГЭ дискретизации подлежит лишь граница объекта. На границе объекта из системы линейных алгебраических уравнений определяются необходимые параметры, а состояние во  [c.6]


В книге приводится методологически последовательная постановка геометрически и физически нелинейных задач механики деформируемого твердого тела, в том числе задачи о потере устойчивости и контактных взаимодействиях тел. Уравнения формулируются относительно скоростей или приращений неизвестных величин. Приводятся слабые формы уравнений и вариационные формулировки задач. Рассматривается применение метода конечных элементов к решению квазистатических и динамических задач. Используются следующие модели материалов изотропная линейно-упругм, несжимаемая нелинейно-упругая Муни — Ривлина, упругопластическая, термоупругопластическая с учетом деформаций ползучести. Приводятся процедуры численных решений нелинейных задач, основанные на пошаговом интегрировании уравнений равновесия (движения). Рассматриваются особенности процедур численного решения задач о потере устойчивости и контакте тел.  [c.2]

Возвратимся к механике сплошной среды. Из предыдущего видно, что уравнения движения элемента сплошной среды в переменных поля первого рода не содержат компоненты реакций связей третьего и четвертого рода. Поля реакций этих связей не изучались ранее. Они не могут быть выявлены при наличии вектора перемещений элементов твердого тела и переменных поля, совпадающих с компонентами этого вектора. Действительно, в этом случае физической геометрией пространства, связанного с деформируемой средой, является евклидова геометрия, и условия несовместности Кренера превращаются в условия совместности Сен-Венана, которые тождественно удовлетворяются, если переменными поля избрать компоненты вектора перемеи ений. Иначе говоря, связи третьего рода как бы исчезают. Не выявляются и их реакции. Однако эти обстоятельства существенно зависят от выбора переменных поля.  [c.37]


Смотреть страницы где упоминается термин Физические уравнения механики твердого деформируемого тела : [c.28]    [c.11]   
Смотреть главы в:

Прикладная механика твердого деформируемого тела Том 1  -> Физические уравнения механики твердого деформируемого тела



ПОИСК



Деформируемое твердое тело

МЕХАНИКА ДЕФОРМИРУЕМЫХ ТЕЛ Механика деформируемых твердых тел

Механика дефорМируемого твердого тела

Механика деформируемого тела

Механика твердого тела

Тело деформируемое

Уравнение физического



© 2025 Mash-xxl.info Реклама на сайте