Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Связь с теорией преобразования поверхностей

Наиболее целесообразный путь преобразования уравнений изгибной теории оболочек вращения и их дальнейшего решения зависит от геометрии оболочки и нагрузок на нее. Проще всего выполняется расчет в том случае, когда геометрия оболочки, нагрузки и условия ее закрепления таковы, что силовыми факторами,-возникающими в связи с изгибом (т. е. моментами М , М2 и поперечной силой Q), и соответствующими напряжениями можно пренебречь по сравнению с усилиями (Т , Tj) и напряжениями, связанными с растяжением срединной поверхности.  [c.132]


Замечание. Для того чтобы безмоментные уравнения сферической оболочки приводились к виду (13.2.7) при помощи подстановок (13.2,5) и (13.2.6), нет необходимости пользоваться географической системой координат. Достаточно потребовать, чтобы срединная поверхность оболочки была отнесена к изотермической системе координат (Ai= и х = я/2). В связи с этим полезно иметь в виду следующую теорему теории поверхностей на любой поверхносга существует бесчисленное множество изотермических систем координат, причем все оии получаются из какой-либо одной при помощи преобразования независимых переменных  [c.179]

Рассмотрим еще один пример. Найдем закон, по которому температура на границе х = О полуограниченного тела связана с плотностью теплового потока д (х) через ту же поверхность. Применяя преобразование Лапласа и теорему о свертке, легко выразить температуру Т (х, х) через плотность потока (х). Предполагая, что начальная температура принята равной нулю, имеем  [c.569]

Рассматриваются граничные интегральные уравнения динамических задач для упругих тел с трещинами в пространстве преобразований Лапласа. В связи с этим все излагаемые результаты относятся к дифференциальным и интегральным уравнениям, а также функциям в пространстве преобразований Лапласа. Поэтому в соответствующих местах во избежание повторений слова в пространстве преобразований Лапласа опускаются. Введенные выше поверхностные потенциалы (5-4) удовлетворяют тождественно дифференциальным уравнениям теории упругости везде в области V за исключением внешней границы дУ и поверхностей трещин й. Частные решения, соответствующие действию объемных сил и неоднородным начальным условиям, выражаются объемными потенциалами. В связи с этим решение той или иной задачи динамики упругих т л с трещинами можно представить в виде суммы граничных и объемных потенциалов. Граничные потенциалы должны содержать достаточно неизвестных, чтобы можно было удовлетворить граничным условиям на внешней поверхности тела дУ и поверхностях трещин й. Для нахождения этих неизвестных строятся граничные интегральные уравнения. При этом используются интегральные соотношения (5.51) или (5.58), в которых учтены свойства граничных потенциалов на границе тела (5.39) и на поверхности трещии (5.43). Во избежание повторений ниже будем использовать соотношения (5.58).  [c.124]

Основное в динамике Гамильтона— Якоби— вариационный принцип, связанный с оптико-механической аналогией, теория интегрирования канонических уравнений Гамильтона и уравнение в частвсых производных Гамильтона — Якоби в связи с касательным преобразованием. Внутренний смысл всей этой математической схемы заключен в ее связи с принципом Гюйгенса, в возможности представлять механическое движение не только в виде перемещения тела (системы точек), но и в виде развертывания касательного преобразования поверхностей равного действия, в глубокой связи траектории луча с некоторой поверхностью (волновой или действия ), выражающей взаимосвязанность корпускулярного и волнового аспектов движения в механике и физике.  [c.216]


Излагаемая ниже теория деформаций носит чисто геометрический характер и не связана с какими-либо предположениями о свойствах деформируемой среды. Будем рассматривать точечное преобразование евклидова пространства, в результате которого точка М (х) сопоставляется точке М (х ). Будем говорить, что материальная точка М переместилась из точки пространства с радиусом-вектором х в точку с радиусом-вектором ж, хотя для кинематической теории вводить понятие материальной точки не обязательно. Деформация области пространства V задана, если величины Xi заданы как функции от Xi s V. Будем считать эти функции непрерывными и деформируемыми всюду, кроме, может быть, некоторых поверхностей S в объеме V. Будем считать также, что если функции Xi xs) неоднозначны, то можно выделить однФзначную ветвь.  [c.213]

Поверхности 5 = onst замечательным образом связаны с задачей движения. С помощью этой частной производящей функции S невозможно решить канонические уравнения в стиле теории интегрирования Якоби, так как мы не знаем, каким образом функция 5 зависит от переменных Qi. Однако вместо того, чтобы использовать вторую группу уравнений преобразования, можно обратиться к первой группе  [c.305]

Таким образом, хотя соотношения Кодацци—Гаусса позволяют считать маспттабы Rq для пологих поверхностей независимыми, система дифференциальных уравнений теории пологих оболочек оказывается инвариантной по отношению к аффинным преобразованиям подобия лишь в том случае, если масштабы /д, ho, связаны дополнительными условиями в форме (6.25).  [c.117]


Смотреть главы в:

Аналитическая динамика  -> Связь с теорией преобразования поверхностей



ПОИСК



Поверхности Теория

Теория преобразований

Теория связи



© 2025 Mash-xxl.info Реклама на сайте