Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Тема 2. Линейные задачи динамики точки

В заключение несколько слов о трудностях, связанных с применением метода годографа и его обобщения-метода производных систем. Основная трудность состоит в том, что в большинстве задач область в плоскости годографа неизвестна. Далее, уже в простейшем случае несжимаемой жидкости, функция Log f (z) имеет особенности в критических точках потоков (где скорость обращается в нуль). Кроме того, переменные (т, а) рассматриваются в зависимости от (и, у), а не от (л , у) — этот переход требует взаимной однозначности отображения (х, у) -> (и, v). Переход от системы (10) к линейной системе (13) требует взаимной однозначности отображения и, и) (т, а). В случае уравнений газовой динамики, а тем более —общих нелинейных систем, проверка этих условий может быть  [c.103]


Еще один класс систем динамики твердого тела связан с движением в сопротивляющихся средах. Возникающие здесь динамические системы уже не являются консервативными, а фазовый поток не обладает инвариантной мерой и имеет сжимающие свойства. Эти задачи изучены существенно меньше, чем описанные в книге, тем не менее очевидно, что при любом движении тела имеется трение, приводящее к диссипации энергии и при отсутствии внешнего воздействия — к состоянию покоя. Имеется несколько феноменологических моделей движения тела в диссипативной среде сухое и линейное (по скорости) вязкое трение, квадратичное (по скорости, турбулентное) сопротивление и пр. Мы здесь рассмотрим простейшие модели вращения твердого тела (либо гиростата) вокруг неподвижной точки при отсутствии внешних сил, но помещенного в вязкую среду. Такая постановка является приемлемой при малых угловых скоростях движения и при простой геометрии тела (не приводящих к образованию вихрей), помещенного в сплошную среду. При указанных условиях динамика тела описывается  [c.255]

При синтезе механизмов передаточные функции, как и функции положения, задаются для обеспечения требуемых кинематических характеристик. Задача синтеза решается точными или приближенными методами. Точные методы применяются к малозвенным механизмам, имеющим простую структурную схему. Для сложных схем усложняются передаточные функции и функции положения, увеличивается число параметров синтеза. К тому же при синтезе многозвенных механизмов обычно удовлетворяют не только кинематические требования к механизму, но и часто требования к его динамике. В этих условиях более удобными оказываются приближенные методы кинематического синтеза. Кроме того, во многих случаях методы приближенного кинематического синтеза более приемлемы, так как истинные кинематические характеристики все равно отличаются от расчетных, полученных точным методом. Это объясняется тем, что в реальных механизмах из-за погрешностей изготовления и упругости звеньев всегда имеются зазоры между элементами кинематических пар, неточности в линейных размерах звеньев, вследствие чего траектории точек, скорости и ускорения звеньев неизбежно отличаются от расчетных. Если для сложных задач синтеза использовать приближенные методы, то при обеспечении допустимых пределов отклонения от заданных параметров затраты на расчет окажутся значительно меньшими, чем при использовании точных методов.  [c.60]


Смотреть страницы где упоминается термин Тема 2. Линейные задачи динамики точки : [c.121]    [c.363]    [c.183]   
Смотреть главы в:

Лекции по классической динамике  -> Тема 2. Линейные задачи динамики точки



ПОИСК



ДИНАМИКА Динамика точки

Динамика ее задачи

Динамика точки

Задачи динамики

Линейная задача



© 2025 Mash-xxl.info Реклама на сайте