Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Химическая стойкость полимеров в агрессивных средах

ХИМИЧЕСКАЯ СТОЙКОСТЬ ПОЛИМЕРОВ В АГРЕССИВНЫХ СРЕДАХ  [c.37]

Отвержденные фурановые полимеры отличаются высокой теплостойкостью (до 300—500 °С) и универсальной химической стойкостью при воздействии агрессивных сред. Они имеют ограниченную водостойкость, не стойки только в сильных окислителях. При отверждении фурановые мономеры и олигомеры имеют большую усадку, что может вызвать растрескивание материала и ухудшение его адгезионной прочности, особенно при использовании их в качестве покрытий. Поэтому очень часто фурановые мономеры и олигомеры применяют в сочетании с другими смолами.  [c.122]


В качестве износостойких, кислото- и щелочестойких покрытий нами были применены пигментированные лаки на основе эпоксидной смолы ЭД-6 с фенолоформальдегидной смолой марки РФН-60. Выбор этих смол обусловлен тем, что резольная фенолоформальдегидная смола обладает высокой химической стойкостью против многих агрессивных сред и теплостойкостью до 150° С, но не стойка против щелочей эпоксидная смола обладает хорошей адгезией к металлам, щелочестойка, способна легко модифицироваться другими смолами и полимерами. Растворы эпоксидно-фенольных смол после сушки дают пленки, обладающие высокой твердостью, эластичностью, прочностью на истирание, стойкостью против действия кислот и щелочей.  [c.100]

Полиэтилен НД обладает высокой химической стойкостью к различным агрессивным средам и органическим жидкостям и не растворяется на холоду в органических растворителях. Однако некоторые растворители вызывают более или менее сильное его набухание. Степень набухания полиэтилена зависит от природы растворителя, длительности его воздействия на полимер, а также от телшературы. В табл. 61 приведены данные изменения веса, предела прочности и относительного удлинения при разрыве пластин полиэтилена НД толщиной 1 мм после выдержки их в различных средах в течение 30 суток при комнатной температуре. Для сравнения в таблицах приведена химическая стойкость пластин полиэтилена ВД толщиной 2 мм.  [c.455]

Полимеры содержат большое число реакционно-способных групп (табл.6), из которых не все принимают участие в реакции. Например, наличие гидроксильных групп приводит к понижению химической стойкости полимеров. Соединения, у которых водород в полиэтиленовой цепи замешен фтором или фтором и хлором (фторопласты), стойки во многих агрессивных средах.  [c.32]

Для четырех наиболее распространенных агрессивных сред химическая стойкость полимеров показана в виде диаграмм (рис. 10-13).  [c.41]

Химическая стойкость пластмасс в основном обусловлена свойствами связующего и наполнителя. Наиболее химически устойчивы относительно различных агрессивных сред фторсодержащие полимеры, причем самым устойчивым является фторопласт-4, превосходящий в этом отношении не только другие типы пластмасс, но и все другие промышленные материалы, в том числе так называемые благородные металлы. К числу кислотостойких пластмасс могут быть отнесены полиэтилен, поливинилхлорид и винипласт — относительно серной и соляной кислот, фенопласты типа фаолит с асбестовым наполнителем — относительно концентрированной соляной кислоты и др. Стойки в отношении щелочей различные пластики, получаемые с участием поливинилхлорида (пластикат, винипласт) и асфальто-пековые пластмассы. Фенопласты и аминопласты с органическими наполнителями к действию щелочей не устойчивы, причем гетинакс значительно менее стоек, чем текстолит. Фенопласты более стойки к слабым растворам соляной  [c.393]

Очень ценными, весьма стойкими в агрессивных средах материалами являются древесина и ее производные. К сожалению, в неблагоприятных условиях дерево подвержено гниению и при неправильном использовании и эксплуатации может быстро разрушиться. Полимерные материалы характеризуются различной степенью коррозионной стойкости, но в большинстве случаев последняя выше, чем стойкость металлов и неорганических материалов. Поэтому для защиты материалов, которые подвержены коррозии, используются различные полимеры в форме лакокрасочных материалов, шпатлевок, замазок, футеровок и клеев. Традиционно надежными изолирующими материалами, химически стойкими в воде, слабо- и сильноагрессивных средах, являются битумные материалы (лаки, мастики, замазки, рулонные материалы).  [c.260]


Наряду с физико-механическими свойствами, коррозионная стойкость является определяющим фактором при выборе и использовании полимерного материала в условиях воздействия агрессивных сред. Химическая стойкость полимеров изменяется в широких пределах не только для различных полимеров, но и для одного и того же полимера (в зависимости от марки, сорта и т. д.). Она зависит от структурных особенностей и химических свойств полимеров.  [c.66]

Коррозия полимеров происходит в гетерогенной системе в результате диффузии агрессивная среда проникает в материал, вызывает набухание или химически взаимодействует с полимером часто оба процесса протекают одновременно. Следовательно, химическая стойкость полимеров будет характеризоваться их проницаемостью, т. е. скоростью проникновения в них агрессивной среды. Интенсивность коррозии определяется диффузией реагента (среды) к поверхности пластичного материала, сорбцией реагента (среды) полимером, диффузией реагента (среды) в твердой фазе (полимере), химическими превращениями (реакциями) между сорбированной средой и полимером (химическая сорбция), диффузией продуктов реакции внутри полимера к его  [c.67]

Часть испытаний проводят по соответствующим ГОСТ. Для резин —определение набухания в жидкостях (421—59), прочности и относительного удлинения при их воздействии. (424—63), стойкости в агрессивных средах при растяжении (11596—65). Для пластмасс — определение водопоглощения (4650—65), химической стойкости (12020—72) и др. При изучении проницаемости полимерных материалов и защитных свойств покрытий на их основе определяют массу агрессивной жидкости, проникшей в полимер, по привесу в условиях наступившего равновесия йли другим методом защитные свойства определяют также визуально по изменению внешнего вида покрытия. Иногда защитные свойства полимерных покрытий оценивают по коррозии подложки (металла), а чаще всего — электрохимически.  [c.76]

Химическая стойкость полимеров при воздействии на них химически агрессивной среды характеризуется диффузией (переносом среды), набуханием и химическими реакциями. Эти факторы могут проявляться одновременно в различных сочетаниях [51—53].  [c.35]

Химическая стойкость полимеров зависит прежде всего от наличия в них активных центров (непредельных связей, функциональных групп, атомов галогенов), которые под воздействием агрессивной среды могут подвергаться изменениям. Поэтому в реакционной способности полимеров и их низкомолекулярных аналогов много общего. Так, например, для реакции хлорирования пропилена характерны те же закономерности, что и для реакции хлорирования алифатических низкомолекулярных углеводородов. Независимо от величины молекулярной массы подвергаются гидролитическому распаду в водных растворах кислот и щелочей соединения, содержащие группы С—О и С—N. Этим объясняется относительно низкая стойкость полимеров (например, силоксанового и уретанового каучуков, полиэфирных смол) в химически агрессивных средах.  [c.35]

Материалы на основе смолы СВХ-40 отличаются хорошей стойкостью к действию агрессивных сред, в том числе и воды. Химически неактивны вследствие высокой насыщенности полимера. Имеют высокие физико-механические показатели. Уступают по адгезии материалам на основе сополимера А-15-0.  [c.194]

Исследование химической стойкости пластических масс с определением изменения механических свойств. В результате длительного воздействия агрессивных сред все изменения и превращения в материале (диффузия, набухание, растворение, деструкция) отражаются на его физико-механических свойствах. Поэтому для оценки химической стойкости полимеров наряду с определением изменения весовых показателей рекомендуется учитывать изменения механических свойств.  [c.224]

Трехмерная структура полимера, наличие в пленке полимера минеральных наполнителей (не реагирующих с химически агрессивными веществами) замедляют проникновение агрессивных сред. Повышение химической стойкости достигается изменением структуры пленки превращаемых полимеров вследствие формирования их при нагреве. Возникающие при этом связи увеличивают стойкость защитного полимера только в том случае, если эти связи достаточно химически устойчивы. Пластификаторы, как правило, снижают химическую стойкость полимера благодаря приданию полимеру большей проницаемости или разрушению самого пластификатора агрессивными средами. Например, пленки перхлорвиниловой смолы устойчивы к щелочам, введение в состав смолы пластификатора дибутилфталата резко снижает стойкость к водным растворам щелочей из-за омыления дибутилфталата.  [c.233]

Фторопласт-3 по химической стойкости несколько уступает фторопласту-4, но все же его стойкость к действию органических растворителей, кислот, щелочей и других агрессивных сред высокая. Полимер легко перерабатывается в изделия методами прессования, литья под давлением и др.  [c.228]

Применение покрытий и футеровок из полимерных материалов — один из наиболее распространенных методов борьбы с коррозией металлов и бетонов. Эффективность такой защиты зависит от многих факторов и, в частности, от характеристик переноса агрессивной среды через покрытие. Действительно, высокая химическая стойкость покрытия еще не гарантирует большой срок службы защищенного изделия, т. к. при большой скорости проникновения агрессивной среды через покрытие последнее сохранит свою целостность, тогда как защищаемый материал будет разрушен. В связи с этим в антикоррозийной технике возникают следующие задачи а) определение самого факта проникновения агрессивной среды в полимер, б) определение времени, в течение  [c.75]


Пластмассы характеризуются сравнительно высокой химической стойкостью и широко используются как конструкционные материалы в различных агрессивных средах. Однако их механические свойства предел прочности, долговечность, пластичность, ползучесть — могут в значительной степени изменяться под влиянием среды. Кроме того, все полимерные материалы подвержены старению, вызванному деструкцией полимера, испарением пластификатора или другими процессами, приводящими к разрушению химических и физических связей в полимере. Воздействие химических веществ, тепла, влажности и механических напряжений усиливает процесс старения. Большинство пластмасс в большей или меньшей степени набухают в различных жидкостях. Набухание сопровождается изменением объема, механических, электрических, оптических свойств.  [c.92]

При контакте с агрессивными средами свойства полимерных материалов изменяются в большей или меньшей степени в зависимости от вида материала, его химической стойкости и других факторов. В первую очередь, как правило, изменяются механические свойства полимерных материалов — их прочность и эластичность. Степень этих изменений обусловливается в равной мере как природой среды, так и природой полимера [37]. В зависимости от агрессивной среды может происходить понижение прочности в результате поверхностно-адсорбционного эффекта или вследствие химического взаимодействия с полимером.  [c.87]

В настояще время техника располагает большим количеством материалов, особенно синтетических, являющихся химически устойчивыми к воздействию самых разнообразных агрессивных сред. Наибольшее практическое применение нашли химически стойкие покрытия на основе перхлорвиниловых смол, поливинилхлоридных, полимеров дивинилацетилена, превращаемых фенольных, бутидиенстирольных, полиэтиленовых, политет-трафторэтиленовых, эпоксидных, различных битумных и т. д. Однако, сама химическая стойкость смол в агрессивных средах далеко не решает еще вопроса защиты самого металла, так как решающее значение в достижении надежной защиты имеет проницаемость этих покрытий для агрессивных сред. Б связи с этим в технологии химически стойких лакокрасочных покрытий особенное внимание уделяется подбору водоустойчивых грунтовок и установлению необходимого количества слоев, соответствующих химически стойких эмалей и лаков.  [c.280]

При склеивании происходит реакция амина с поверхностью полимера, причем ненасыщенный составной элемент амина вступает в реакцию со склеивающим реагентом. Склеивание двух поверхностей получается в результате образования химических связей. При выборе подходящего склеивающего вещества можно склеить фторопласт-3 с любым материалом. Во всех случаях использования клеев — при обклеивании (футеровки) аппаратов фторопластами или соединении деталей — следует иметь в виду, что химическая стойкость этих соединений уступает стойкости основного материала. Поэтому долговечность и работоспособность склеенной конструкции в агрессивных средах всегда хуже по сравнению с цельными изделиями.  [c.97]

Возможность использования АСП в конкретных узлах приборов и машин в значительной мере определяется такими свойствами, как водо-поглощение, химическая стойкость в агрессивных средах, коэффициент термического расширения. Наиболее водостойкими являются АСП на основе сополимеров формальдегида, поликарбоната, фторопласта-4, фторопласта-40, эпоксидных связующих, фурановых смол. АСП характеризуются более низкими значениями коэффициента термического расширения по сравнению с исходными полимерами. Для всех АСП характерна достаточно высокая химическая стойкость (наибольшей обладают АСП на основе фторопласта-4).  [c.181]

Фторопласты — производные этилена, в которых все атомы водорода заменены галогенами. Они имеют наибольшую термическую и химическую стойкость из всех термопластичных полимеров. Фторопласт-4 (- Fj- F -) , называемый также тетрафторэтилен (тефлон), имеет высокую плотность (2,2 г/см ), водостоек, не горит, не растворяется в обычных растворителях, обладает электроизоляционными и антифрикционными свойствами. По химической стойкости превосходит все известные материалы. Выдерживает температуру от -269 до +260 °С. Недостаток — трудность переработки в изделия. Применяется для изгртовления изделий, работающих в агрессивных средах, при высокой температуре, для антифрикционных покрытий на металлах, прокладок, электроизоляции и др. Фторопласт — 3 (- F - F l-) по свойствам и применению аналогичен фторопласту-4, уступая ему по электроизоляционным свойствам, термической и химической стойкости и превосходя по прочности и твердости. Он более пластичен и поэтому легче перерабатывается в изделия.  [c.239]

Одним из Р -аиболее эффективных направлений является изготовление химических аппаратов, газоходов, стволов вытяжных башен-труб из полимерных слоистых материалов (наполненных пластмасс). Сочетание полимеров с наполнителями позволяет обеспечить высокую прочность и жесткость конструкций, стойкость в агрессивных средах и снизить стоимость. В отечественной практике находят применение конструкции из стекло- и углестеклопластиков и фаолита.  [c.178]

Во-первых, наличие большого количества функциональных групп в полимере, их близкое расположение дру1 к другу обусловливают их взаимодействия между собой, что понижает химическую активность материала при контакте с внешней средой. Во-вторых, активные центры в твердом полимере могут быть труднодоступными для молекул агрессивной среды из-за диффузионных ограничений. В-третьих, на реакционную способность полимеров существенно влияет появление в них кристаллических областей. С повышением степени кристалличности возрастает химическая стойкость полимера, так как замедляется диффузия в него агрессивной среды. В четвертых, при действии на полимер химически активных сред на поверхности полимера часто образуются плотные слои из продуктов взаимодействия, что также снижает диффузию химически активных веществ к активным центрам. Наконец, пространственные связи в полимере могут также способствовать увеличению его химической стойкости, если эти связи не оказываются слабее связей основной цепи. Характер поперечных связей существенно влияет на поведение полимера только в случае проникновения среды в его массу. При поверхностном же действии среды, особенно когда наблюдается образование на поверхности полимера плотной пленки из продуктов его превращения, характер поперечных связей на стойкость полимера практически не влияет.  [c.40]

Химическая стойкость пластмасс в основном определяется свойствами связующего и наполнителя. Наиболее химически устойчивыми в отношении всех агрессивных сред являются фторсодержащие полимеры — фторопласт-4 и фторопласт-3. К числу кислотостойких пластмасс в отношении концентрированной соляной кислоты могут быть отнесены винипласт, фенопласты с асбестовыми наполнителями (фаолит) и др. Стойкими к действию щелочей являются такие разновидности пластмасс, как асфальтопековые, винипласт и хлорвиниловый пластикат.  [c.523]

Экспериментальные, данные и опыт эксилуатации полимерных материалов в условиях воздействия агрессивных сред позволяют делать выводы о связи мелгду структурой высокомолекулярных соединений и их химической стойкостью. В отличие от низкомолекулярных соединений, макромолекула содержит большое число реакционноспособных групп, в зависимости от характера которых или замены их другими группами свойства полимера могут в значительной степени изменяться в сторону их ухудшения или улучшения. Например, на поливиниловый спирт, содержащий гидроксильные группы, оказывают влияние вода, кислоты и щелочи. Стойкость иоливинилацет ата, полиакриловой кислоты и других высокомолекулярных соединений, которые можно представить как производные полиэтилена при частичном или полном замещении водорода гидроксильными, ацетатными или другими функциональными группами, также понижена. Соединения, у которых водоро.т в полиэтиленовой цепи замещен фтором или фтором и хлором, стойки во всех агрессивных средах.  [c.357]


Производится полиэтилен в стабилизированном и нестабили-зированном виде. В зависимости от применяемого стабилизатора полиэтилен может менять цвета. Определение предела прочности при растяжении и относительного удлинения полиэтилена ВД необходимо производить с учетом формы испытуемого образца и условий испытаний скорости деформаций, температуры, толщины образца и т. д. Полиэтилен ВД обладает высокой химической стойкостью к агрессивным средам и органическим растворителям при определенных концентрациях и температурах. Он мало устойчив к сильным окислителям, таким, как концентрированная азотная кислота. При повышении температуры до 323 К материал разрушается через двое суток. Полиэтилен ВД относительно стоек к действию спиртов, мыл, жирных масел и т. п. Однако его стойкость в этих средах резко уменьшается, если полимер находится в напряженном состоянии.  [c.52]

Кристаллические полиолефины об,(1ад8Ют достаточно высокой механической прочностью, высокими электроизоляционными свойствами, устойчивы к действию агрессивных сред (за исключением сильных окислителей, например, азотной кислоты), способны образовывать легко ориентируемые пленки и в ряде случаев волокна (например, полипропилен), могут перерабатываться любыми способами, принятьшй в промышленности пластмасс. Недостаток полиолефинов — плохая адгезия, обусловленная отсутствием полярных групп, и сравнительно невысокая жесткость, из-за которой ограничивается применение этих полимеров как конструкционных материалов. С д 1угой стороны, отсутствием полярных групп объясняется повышенная химическая стойкость полиолефинов.  [c.103]


Библиография для Химическая стойкость полимеров в агрессивных средах : [c.82]   
Смотреть страницы где упоминается термин Химическая стойкость полимеров в агрессивных средах : [c.430]    [c.243]    [c.141]    [c.7]    [c.49]    [c.52]    [c.207]    [c.41]   
Смотреть главы в:

Антикоррозионная служба предприятий. Справочник  -> Химическая стойкость полимеров в агрессивных средах



ПОИСК



Агрессивные среды

Полимерия

Полимеры

С агрессивная

Среды агрессивность

Стойкость полимеров

Химическая стойкость

Химическая стойкость полимеров



© 2025 Mash-xxl.info Реклама на сайте