Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Периодическое движение в окрестности особой точки

Наличие на фазовой плоскости замкнутых фазовых траекторий (например, эллипсов в окрестностях рассмотренной особой точки) указывает на существование периодических движений. Из нашего анализа следует, что в окрестностях особой точки, отвечающей минимуму потенциальной энергии, происходят периодические движения с эллиптическими фазовыми траекториями, соответствующими гармоническим колебаниям. Реальное движение тем ближе к гармоническому, чем меньше превышение запаса энергии системы над запасом энергии в точке равновесия, т. е. чем меньше величина Л —Л . В системах, в которых потенциальная функция  [c.19]


Ниже мы увидим, что особые точки (дающие положения равновесия) и замкнутые силовые линии (даюш ие периодические орбиты) играют особую роль при изучении движения системы. Начнем с изучения движения в окрестности особой точки.  [c.364]

Периодическое движение в окрестности особой точки. В гл. XIX  [c.602]

S 30.2] ПЕРИОДИЧЕСКОЕ ДВИЖЕНИЕ В ОКРЕСТНОСТИ ОСОБОЙ ТОЧКИ 603  [c.603]

Выше предполагалось, что состояние равновесия, появляющееся на периодическом движении, простое. Рассмотрим теперь случай, когда это состояние равновесия сложное. Придерживаясь нашего принципа общности, оно должно быть таким, чтобы этой возможности в пространстве параметров отвечала бифуркационная поверхность размерности на единицу меньше, чем размерность пространства параметров, т. е. бифуркационная поверхность, отвечающая бифуркации общего типа. Из этого следует, что сложная особая точка должна быть простейшей и ей должна отвечать в пространстве параметров некоторая поверхность. В сколь угодно малой близости от нее эта сложная точка должна превратиться в простую или исчезнуть. Общие случаи превращения простых точек в сложные нам известны. Эти превращения происходят на поверхностях и /V,,-Поверхность не подходит, так как наличие у соответствующего ее точкам сложного состояния равновесия двоякоасимптотической траектории может быть лишь при выполнении некоторых дополнительных условий, поскольку для ->того требуется пересечение интегральных многообразий Sp и S.,, таких же, как и в ранее рассмотренном случае. На поверхности yv происходит слияние состояний равновесия О"" и Этот случай нас устроит, если наличие двоякоасимптотической фазовой кривой возможно в общем случае. Рассмотрим этот вопрос. Через точку О"" проходят интегральные многообразия Sp и S, и через точку 0/>+1, -I — интегральные многообразия Sp i и S i. Пересечение многообразий Sq и Sp,.i является общим. В силу того, что на поверхности /V,, состояния равновесия О -" и сливаются, до момента этого слияния поверхности Sg и Sp+i в окрестности этих точек в общем случае пересекаются по некоторой двоякоасимптотической фазо-  [c.264]

Экспериментальные данные радикально отличаются от этой величины. Например, для Sn G=l,9-10 дн/см , а предел упругости — 13-10 дн/см2. Для Ag соответственно 2,8-10" и 6-10 , для А1 — 2,5-10" и 4-10 . Для объяснения этого различия было предположено, что в кристаллах существуют дефекты особого типа, называемые по современной терминологии дислокациями. Дод дислокацией понимают линейный дефект, появляющийся вследствие нарушения правильного чередования атомных плоскостей в кристалле. Например, дислокация возникает, если выше (ниже) какой-то плоскости в части кристалла появляется лишняя (как бы вставленная) атомная плоскость или, наоборот, оттуда изымается одна из плоскостей. Тогда силы, удерживающие конечные ряды этой лишней плоскости, будут существенно слабее тех, которые реализуются при строго периодическом расположении атомов, поскольку в окрестности дислокации атомы не находятся в положениях, отвечающих минимуму кристаллического поля. В результате движение атомных плоскостей вблизи дислокации  [c.237]


Для случая и = 1 мы уже указывали ряд примеров семейств периодических траекторий в окрестности особой точки типа центра пример 19.10aU) (рис. 86), пример 19.10G (рис. 87), пример 19.НА (рис. 89). В примере 19.10А(1) период каждого из периодических движений точно (а не приближенно) равен 2я/цо- В примере 19.ЮС период приблин<енно равен  [c.608]

Теперь рассмотрим оставшиеся возможности для изменения периодического движения Г, т. е. те, при которых наруилается существование гладкого взаимно однозначного отображения секущей. Для таких изменений есть следующие возможности замкнутая кривая Г стягивается в точку, на ней появляется состояние равновесия, она уходит в бесконечность ). Замкнутая кривая может стянуться только к особой точке — состоянию равновесия — и поэтому этот случай уже был изучен при рассмотрении бифуркаций состояний равновесия. Он соответствует переходу через бифуркационную поверхность Л/, . Второй случай новый, хотя он тоже связан с бифуркацией состояния равновесия, но не был замечен, поскольку раньше рассмотрение относилось только к окрестности состояния равновесия и не выходило за ее пределы. Перейдем к его рассмотрению. Третий случай оставим без внимания ввиду очевидности связанных с ним изменений. В рассматриваемом случае при бифуркационном значении параметра имеется состояние равновесия О и фазовая кривая Г, выходящая и вновь входящая в него. Пусть это состояние равновесия простое, типа О ". Так как фазовая кривая Г выходит из О" , то она лежит на инвариантном многообразии S,,, а так как она в него еще и входит, то она принадлежит еще и многообразию S l,. Отсюда следует, что многообразия Sp и 5 пересекаются по кривой Г. Соответствующая картинка представлена на рис. 7.14. Как нетрудно понять, пересечение поверхностей S,, и не является общим случаем и при общих сколь угодно малых изменениях параметров динамической системы должйо исчезнуть. Это означае т, что в пространстве параметров этому случаю вообще не отвечают области, а, как можно обнаружить, в общем случае только некоторые поверхности на едирплцу меньшей размерности. Таким образом, исследование этой бифуркации периодического движения свелось к следующему вопросу когда фазовая кривая, идущая из простого седлового дви-  [c.262]

Но поскольку реализованная процедура аналитического метода расчета лишь приближенно описывает движение КА, то тем самым и многообразие условно-периодических траекторий определено также приближенно. В частности, в точном решении задачи о движении КА, определяемом начальными данными, соответствую-Ш ими условно-периодическому движению приближенной задачи, неизбежно будут присутствовать экспоненциально возрастаюнще функции времени. Для оценки точности приближенного метода было проведено сравнение с результатами численного интегрирования строгих уравнений движения в декартовых координатах. Эти результаты рассматривались как эталонные. Вообш е говоря, достаточно точное вычисление координат КА в окрестности неустойчивой особой точки с помощью численного интегрирования также является некоторой проблемой, так как методические ошибки аппроксимации и ошибки округления экспоненциально возрастают. Оценки показали, что их суммарная погрешность на интервале 10 сут не превышает примерно 10 м, что существенно меньше ошибок приближенного метода. Поэтому для наших целей результаты численного интегрирования можно принять за эталон.  [c.294]


Смотреть страницы где упоминается термин Периодическое движение в окрестности особой точки : [c.110]    [c.82]   
Смотреть главы в:

Аналитическая динамика  -> Периодическое движение в окрестности особой точки



ПОИСК



Движение периодическое

Окрестность точки

Особые

Периодические точки

Точка особая

Точка — Движение



© 2025 Mash-xxl.info Реклама на сайте