Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Sin-Гордона уравнение обратная задача рассеяния

Обратная задача рассеяния для уравнения Sin-Гордона  [c.584]

Задачи такого типа впервые возникли при изучении изоспек-тральных деформаций для ряда нелинейных задач математической физики. В случае обратимости соответствующих преобразований в рамках данного подхода был развит метод обратной задачи рассеяния (см., например, [1, 33, 85, 87, 115]), позволивший для некоторых нелинейных волновых уравнений типа Кортевега — де Фриза (КдФ) и его модификаций, уравнений Кадомцева — Петвиашвили, нелинейного уравнения Шредингера, уравнений синус-Гордона и др., получить специальный подкласс солитоноподобных решений. Этот метод по сути дела является нелинейным обобщением анализа Фурье и может рассматриваться как нелокальная линеаризация исходных нелинейных волновых уравнений, ассоциируемых с заданной линейной задачей на собственные значения посредством условия интегрируемости пары дифференциальных уравнений в частных производных. В дальнейшем уравнения, обладающие решениями такого сорта, полученными в рамках метода обратной задачи или эквивалентных ему, будем условно называть вполне интегрируемыми. Термин точной интегрируемости сохраним для систем, решения которых выражаются в квадратурах и определяются  [c.8]



Смотреть страницы где упоминается термин Sin-Гордона уравнение обратная задача рассеяния : [c.572]    [c.84]    [c.584]   
Линейные и нелинейные волны (0) -- [ c.584 ]



ПОИСК



Sin-Гордона уравнение

Гордона

Задача обратная

Обратная задача рассеяния

Обратное рассеяние



© 2025 Mash-xxl.info Реклама на сайте