Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Условие граничное Дирихле

Как нетрудно видеть, запись (1.6) объединяет три хорошо известных типа граничных условий для краевых задач математической физики [38, 3, 59]. Действительно, при yi=0 имеем граничное условие первого рода (условие типа Дирихле), когда задано распределение изучаемой характеристики на границе среды. При -у2=0 получаем условие второго рода (типа Неймана), когда задана нормальная составляющая градиента поля /(гз, т) на границе среды наконец, при 71=5 0 и 72=7 0 имеем условие третьего (ньютоновского) типа.  [c.11]


Рассмотрим решение поставленной задачи для xeV с граничными условиями типа Дирихле tv(x)=0 для хеГ, fV x)=a для xeS.  [c.153]

На поверхности тела может быть задана температура (граничное условие первого рода, или условие типа Дирихле)  [c.48]

Граничные условия. Задачи Дирихле и Неймана. Разыскание комплексного потенциала  [c.238]

Поскольку в задаче о потенциале задано его значение на поверхности (граничное условие типа Дирихле), вариация потенциала на поверхности равна нулю и интеграл по поверхности обращается в нуль. Используем также тот факт, что вариация пространственной плотности заряда есть нуль и операции варьирования и интегрирования выполняются независимо. Поэтому вариационный оператор может быть вынесен за знак интеграла. Кроме того, заметим, что  [c.156]

Большинство задаваемых граничных условий являются или условиями типа Дирихле (задано значение функции), или условиями типа Неймана (задан градиент функции по нормали к границе). До настоящего времени гидродинамические задачи с условиями смешанного типа (условия Роббина), где задана  [c.213]

Уравнение (6.44) выражает собой так называемый принцип потенциальной энергии при заданных внешних силах и граничных условиях действительные перемещения ui таковы, что для любых возможных перемещений первая вариация полной потенциальной энергии равна нулю, т. е. полная потенциальная энергия П имеет стационарное значение. Можно показать (теорема Лагранжа—Дирихле), что в положении устойчивого равновесия полная потенциальная энергия системы имеет минимальное значение, т. е. вторая вариация д П>0.  [c.123]

Таким образом, задача определения Ф(хь Хг) есть задача Дирихле для уравнения Пуассона (7.15) при граничном условии (7.16). Из формулы (7.8) с учетом (7.14) для определения крутящего момента будем иметь  [c.177]

Функция кручения ф должна быть однозначной в противном случае перемещение з=тф было бы многозначным (нас интересуют однозначные перемещения). При этом функция tjj, сопряженная с однозначной гармонической функцией, определяемая из условий Коши — Римана (7.10), может быть, вообще говоря, многозначной в нашем случае этого не должно быть, ибо функция г ) возвращается к первоначальному значению цри обходе по любому из контуров Lv, что видно из граничного условия для нее. Исходя из этого постоянные не могут быть фиксированы произвольным образом. Действительно, если фиксировать их произвольно, а затем определять функцию i 3 (для этого следует решить задачу Дирихле, которая, как известно, всегда имеет единственное решение), то функция ф, найденная из условий Коши — Римана с помощью функции 1 ), может оказаться многозначной.  [c.179]

Особый практический интерес представляет рассмотрение областей с криволинейными контурами, когда граница не совпадает с линиями ортогональных сеток (рис. 38). В этом случае следует различать контур заданной области Ь и контур сеточной области М, аппроксимирующей заданную. При расчете в этом случае граничные значения должны быть заданы в точках сеточной области, тогда как известны они на границе первоначальной области. При решении первой краевой задачи (задачи Дирихле), когда на границе задаются значения искомой функции, необходимо эти значения перенести на контур сеточной области так, чтобы после отыскания решения значения искомой функции на контуре первоначальной области совпали с теми граничными значениями, которые были заданы на этом контуре. Но такой переход может быть выполнен лишь после того, как будут найдены значения функции во внутренних точках области, т. е. тогда, когда будет решена поставленная задача. В связи с этим удовлетворение граничных условий может быть выполнено лишь путем последовательных приближений, причем переход к точкам контура может быть произведен по формулам  [c.88]


Наконец, если в рассматриваемой задаче начальные условия отсутствуют и имеются лишь граничные (краевые), то такую задачу математической физики называют краевой задачей (ее называют также стационарной задачей). При этом, если в краевой задаче используются граничные условия или I, или II, или III родг, то ее называют соответственно или первой, или второй, или третьей краевой задачей (первую краевую задачу называют также задачей Дирихле, вторую — задачей Неймана).  [c.126]

Перейдем к построению и исследованию интегральных уравнений, соответствующих задачам Дирихле и Неймана. При рассмотрении этих задач будем теперь полагать, что граничная поверхность есть поверхность Ляпунова, а краевые условия — функции Р и р2—непрерывные функции.  [c.99]

Таким путем решение общих задач Дирихле и Неймана для функции ф с произвольными граничными данными сводится к решению частных задач Дирихле и Неймана длй функции к с граничными условиями (12.22). Очевидно, что таким же путем можно строить функцию Грина для смешанной задачи.  [c.167]

Формулы (2.35) определяют порядок модификации матриц [С] , [АГ] и для учета граничных условий Дирихле (2.29). Аналогично можно показать, что решение стационарной задачи теплопроводнос-  [c.56]

Не входя в рассмотрение других граничных условий, относящихся к специальным случаям, отметим, что дело всегда сводится к заданию на поверхности тела либо температуры (задача Дирихле), либо производной от температуры (задача Неймана), либо неко-  [c.22]

Если к нелинейному уравнению стационарной теплопроводности (VI. 14) применить одну из подстановок (Кирхгофа или Шнейдера), то оно преобразуется в уравнение Лапласа, которое, как известно, может быть смоделировано на -сетках с постоянными параметрами и на моделях, выполненных из электропроводной бумаги. Трудность заключается в моделировании граничных условий, которые в большинстве случаев оказываются нелинейными и после применения подстановок (граничные условия III и IV рода). Решение задач Дирихле и Неймана, как показано в предыдущей главе, ничем не отличается от решений соответствующих задач в линейной постановке. Поэтому на таких задачах останавливаться не будем. Что касается лучистого теплообмена и решения задач с граничными условиями  [c.88]

Дирихле и Неймана с помощью данного метода могут быть решены на УСМ-1 и без приставки, так как граничные условия в этих краевых задачах линейные, и для их моделирования используются имеющиеся на машине каналы блока граничных условий I и II рода).  [c.130]

ЧТО система (59.11) — (59.12) не может относиться к эллиптическому типу, так как в этом случае граничные условия (для решения задачи Дирихле) следовало бы задавать на всей границе области.  [c.457]

Излагаются методы эффективного построения этих решений и много внимания уделяется обстоятельствам, при которых решения существуют и единственны. Эти вопросы в безмоментной теории решаются нетривиально. Общая линейная краевая задача моментной теории оболочек единообразна она заключается в интегрировании эллиптической системы уравнений с выполнением в каждой точке края (или краев, если область многосвязна) четырех граничных условий. Она всегда имеет единственное решение. Однако при переходе к описанной выше безмоментной краевой задаче картина становится весьма пестрой, так как тип уравнений, подлежащих интегрированию, может оказаться любым (эллиптическим, гиперболическим и параболическим). Различными по своему характеру оказываются и краевые задачи безмоментной теории это могут быть задачи типа Дирихле, задачи типа Коши, а также задачи, не предусмотренные существующей классификацией. К тому же может существовать несоответствие между типом краевой задачи безмоментной теории и типом уравнений, для которых ее надо решать. Например, задачу Дирихле иногда приходится решать для гиперболического уравнения, а задачу Коши — для эллиптического. Все это приводит к тому, что теоремы существования и единственности для краевых задач безмоментной теории формулируются далеко не единообразно и в них вопрос не всегда решается положительно. Однако такая ситуация не свидетельствует о принципиальной порочности самой идеи выделения в самостоятельное рассмотрение краевой задачи безмоментной теории. Каждая из описанных выше странностей краевых задач безмоментной теории свидетельствует об определенных особенностях искомого напряженно-деформированного состояния оболочки. Для широкого класса задач это будет показано в части IV.  [c.174]

Рассмотрение итерационных процессов выполнения граничных условий позволяет сделать и некоторые чисто математические заключения. В теории оболочек можно говорить о возмущенной и невозмущенной краевых задачах. Под первой подразумевается интегрирование неупрощенных уравнений с учетом всех (тангенциальных и нетангенциальных) граничных условий, а вторая заключается в интегрировании предельных (при = 0) уравнений с учетом одних тангенциальных условий. Возмущенная краевая задача в теории оболочек всегда представляет собой корректно поставленную задачу типа Дирихле. Однако вырожденная задача теории оболочек может оказаться в том или ином смысле некорректной. В ней может иметь место несовпадение числа граничных условий с порядком уравнений, несоответствие типа уравнений типу краевой задачи (может получиться, например, задача Дирихле для гиперболической системы или задача Коши для эллиптической системы) и т. д. Очевидно, что все такие неправильности невозмущенной задачи оказывают существенное влияние на характер напряженного состояния оболочки, и их полезно иметь в виду при разработке любых подходов к фактическому решению задачи (в том числе и непосредственного счета на ЭЦВМ). Если стать на путь приближенных подходов к решению краевых задач теории оболочек, то здесь результаты настоящего раздела находят непосредственное применение. Исходное приближение каждого из рассмотренных итерационных процессов можно рассматривать как приближенный метод решения соответствующей краевой задачи. Получаемые таким образом результаты при желании можно уточнять, увеличивая количество итераций.  [c.272]


На линии Pi = Pii также должны выполняться условия вида (П. 12.3) или условия ие-ярерывности (если линия р = р стягивается в точку), но мы пока их не будем учитывать. Постоянный параметр 8 в правой части (П. 12.3) считается малым, т. е. рассматривается задача Дирихле с сильно осциллирующими граничными условиями [24, 25], Кроме того, принимаются следующие дополнительные предположения  [c.490]

Покажем теперь, что, еслн в обсуждаемой задаче Дирихле сохранить пока только граничные условия (П. 12.13), т. е. не учитывать условий на краю Pi=Pii, то решение можно искать в виде  [c.493]

В описанном решении использованы только экспоненциально затухающие интегралы. Поэтому можно считать, что все члены суммы (П.13.1) у края Pi = Рц по модулю мало отличаются от нуля, и значит при Pi = Рц приближенно выполняются однородные условия вида (П. 12.3) или условия непрерывности (если Pi = Рц стягивается в точку). Таким образом, предлагаемый подход является приближенным методом решения задачи Дирихле для случая, когда неоднородность содержится только в граничных условиях на краю Pi = Р] .  [c.495]

Рассмотренная задача Дирихле линейна. Поэтому, использовав принцип суперпозиции, можно значительно обобщить ее постановку, считан, что все граничные условия (H.12.3V неоднородны и имеют правые части вида  [c.495]

П.9, где было показано, что по своим свойствам оин впачне аналогичны интегралам, соответствующим характеристикам оператора L, поэтому, повторив приведенные здесь рассуждения, легко убедиться, что есть ровно /2 существенно различных интегралов, соответствующих характеристикам N и таких, что они удовлетворяют граничным равенствам вида (П. 12.12), а также условию чкспоненцнального затухания вблизи Pj = Pj вида (П. 12.14). Учитывая все это, можно утверждать, что решение задачи Дирихле с граничными условиями вида (П. 12.3) при Pi = PiQ и с однородными граничными условиями при Pi = Pij будет иметь вид  [c.496]

Сравним краевую задачу (П. 14.1), (П. 14.3) с краевой задачей (П. 12.1), (П. 12.3). В них дифференциальное уравнение (П. 14.1), как уже сказано, представляет частный случай (П.12.1). Однако граничные условия (П.14 3) и (П.12.3) друг к другу, вообще говоря, не сводятся. Равенства (П. 12.3) являются классическими условиями Дирихле в них задаются нормальные производные всех порядков до л/2 — 1, а в левых частях условий (П.14.3) стоят дифференциальные выражения (П. 14.2) более общего вида. Темпе меиее, мы будем здесь краевую задачу (П.14.1), (П.14.3) рассматривать как частный случай краевой задачи (П.12.1), (П.12.3) и примем, что по выявленным в П.12, П.13 свойствам последней можно судить о свойствах напряженно-деформированного состояния оболочки. Это, в частности, значит, что края оболочки должны быть неаснмптотическими, так как в П. 12 предполагалось, что граница области нигде не касается характеристик оператора L, а в теории оболочек они совпадают с асимптотическими линиями срединной поверхности (возможное влияние различия в типе граничных условий на окончательные выводы будет обсуждено ниже).  [c.499]

Вернемся к вопросу о законности замены граничных условий (П. 14.3) на граничные условия вида (П. 12.3). Исходя из последних, мы свели в конечном итоге задачу Дирихле к некоторой последовательности задач Коши, но на пути к этому результату надо было для определения граничных значений функций интенсивности ф решать систему алгебраических линейных уравнений (П. 13.8) с определителем Вандермонда, поведение которого хорошо известно. Система алгебраических уравнений для определения граничных значений (р получится и н случае, когда граничные условия имеют более общий вид, однако исследование определителя станет уже нетривиальным. Для того чтобы он оказался отличным от нуля, надо правильно подобрать числа а и Ь. введенные формулами (П. 13.1). Здесь возникает много вариантов, связанных с большим разнообразием граничных условий теории оболочек, а соответствующие результаты, в сущности, повторяют те, которые уже были получены в части IV. На подробностях мы останавливаться не будем.  [c.504]

Создание теории позволило свести расчет эластомерного слоя к интегрированию обобщенного уравнения Гельмгольца для функции относительного приращения объема, причем при статических граничных условиях на боковой поверхности имеем Задачу Дирихле, при кинематических — задачу Неймана.  [c.26]

Рассмотрены различные типы граничных условий на боковой поверхности слоя — статические и кинематические. В первом случае имеем краевую задачу Дирихле, во втором — задачу Неймана (раньше задача Неймана не была сформулирована, так как кинематические условия не исследовались).  [c.31]

При помощи (2.17) граничное условие (2.2) сводится к следующей задаче Дирихле во внешности математического разреза (—/, +/) плоскости z  [c.32]

Внутренняя задача о распространении гармонической волны имеет единственное решение, если со не является одним из собственных значений системы. Существуют, однако, родственные трудности в случае соответствующей внешней граничной задачи, что выражено уравнением (10.77), хотя оно, конечно, удовлетворяет обычным условиям регулярности, а также условиям излучения на бесконечности. Имеется бесконечная последовательность значений со, совпадающих с соответствующими резонансными волновыми числами или собственными значениями соответствующей внутренней задачи, при которых это уравнение имеет множество решений. Поэтому решение внешних задач Дирихле или Неймана не будет иметь успеха при волновых числах, отвечающих собственным значениям внутренних задач Неймана и Дирихле соответственно. Это не физическая трудность, присущая внешней задаче, так как для йнешних задач не существует собственных значений трудность неединственности полностью обусловлена формулировкой задачи через граничные интегралы. Подробное обсуждение возникающих здесь трудностей можно найти в работах [5, 10, 21, 23, 24, 55—57], где для преодоления этих трудностей предложены модификации как прямого, так и непрямого методов.  [c.299]

Рассмотрим сначала этот метод на примере задачи Дирихле для бесконечной области, ограниченной двумя простыми непе-ресекающимися замкнутыми контурами Fi и Г2. Уравнение и граничные условия задачи в этом случае можно записать в виде  [c.231]

Решение задачи типа Дирихле ищется в виде обобщенного потенциала двойного слоя, а задачи типа Неймана — в виде потенциала простого слоя. Из граничных условий получаются ИУ второго рода по границе области относительно неизвестных плотностей потенциалов.  [c.186]


Смотреть страницы где упоминается термин Условие граничное Дирихле : [c.61]    [c.239]    [c.241]    [c.618]    [c.144]    [c.11]    [c.210]    [c.227]    [c.80]    [c.64]    [c.64]    [c.200]    [c.496]    [c.241]    [c.233]   
Введение в метод конечных элементов (1981) -- [ c.31 , c.42 , c.46 , c.57 , c.59 , c.95 , c.117 , c.162 , c.276 ]



ПОИСК



Граничные условия

Граничные условия. Задачи Дирихле и Неймана

Дирихле

Условия Дирихле

Условия Дирихле эквивалентные граничные связанные



© 2025 Mash-xxl.info Реклама на сайте