Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

XYa, молекулы, линейные, симметричные кориолисово взаимодействие

В случае почти одинаковых частот v.2 и при первоначальном возбуждении одной из частот происходило бы в силу кориолисова взаимодействия и сильное возбуждение другой частоты. Однако это возбуждение будет очень слабым, если, как это имеет обычно место, частоты колебаний и V, зна- чительно разнятся между собой. Следствие кориолисова взаимодействия в любом случае будет то, что во вращающейся системе координат при возбуждении, например, колебания Уд атомы будут двигаться не по прямым, а по эллипсам, тем более вытянутым, чем меньше взаимодействие, т. е. чем меньше скорость вращения или чем больше отличаются друг от друга частоты колебаний у, и Уд. На фиг. 101 показано движение атомов для трех основных колебаний линейной симметричной молекулы типа ХУ . Так как для каждого рассматриваемого колебания каждый атом описывает эллипс с тем же направлением вращения, то, очевидно, возникает добавочный колебательный момент количества движения, что приводит к изменению энергии.  [c.403]


Однако для трижды вырожденных колебательных состояний кориолисово взаимодействие вызывает расщепление. Это легче всего обнаружить, если рассмотреть колебание молекулы ХУ4, приведенное на фиг. 41. Если вращение происходит вокруг оси 2 и возбуждена составляющая то силы Кориолиса стремятся возбудить составляющую и не действуют на составляющую 7з(,. Ввиду этого в данном случае происходит расщепление на три компоненты, причем одна из них сохраняет первоначальное значение частоты. Так же как и для симметричного волчка, два других колебания являются такими линейными комбинациями первоначальных колебаний и зе> которые под действием сил Кориолиса уже не стремятся переходить друг в друга. Как и прежде, эти две линейные комбинации образуют два круговых колебания (по часовой стрелке и против нее) с моментами количества движения р. В действительности, силы, действующие на ядра У, не одинаковы во всех направлениях, движение отличается от кругового и является эллиптическим. Момент р параллелен или антипараллелен полному моменту количества движения.  [c.475]

Комбинационные частоты 269, 271 Контур неразрешенных полос как индикатор типа полос 416,473, 514 Контурные линии, представление потенциальных поверхностей 220 Координаты симметрии в системе валентных сил 164 Координаты смещения,отношение к нормальным координатам 81. 83, 86, 87, 95, 160, 183 Кориолисово взаимодействие в асимметричных волчках 495 в линейных молекулах 400 в симметричных волчках 429. 435, 463 в тетраэдрических молекулах 475, 480 доля во вращательной постоянной а 401 как причина появления запрещенных колебательных переходов 486 как причина снятия вырождения 433.435 как причина удвоения / 404 правила отбора 404, 443, 475, 479, 486, 495 Кориолисово расщепление влияние на структуру полосы 457, 469, 472,481, 486  [c.603]

Xs, молекулы, плоские, образующие правильный шестиугольник (De/,) 103, 110, 132, 203 Х молекулы точечной группы Dia, предположение о более общей квадратичной потенциальной функции 20Э Х , молекулы точечной группы Of 21 ХоСО, плоские колебания как функция массы X 218, 219 XYa, молекулы, линейные, симметричные влияние ангармоничности на колебательные уровни 230 вращательная постоянная D 26 выражения для основных частот и силовых постоянных 172 в более общей системе сил 204 в системе постоянных валентных сил 190 изотопический эффект 249 колебательный момент количества движения 88, 403 координаты симметрии 172 кориолисово взаимодействие 402, 403 междуатомные расстояния 424, 426  [c.614]

Те.м не менее, не каждая пара колебаний оказывает такое влияние. Как мы видели выше (фиг. 100), в случае линейной молекулы типа Х сила Кориолиса обусловливает взаимодействие только между колебаниями v, и ни не между колебаниями Vj и vj или колебаниями Vj и v . Общее правило, указывающее, для каких колебательных состояний имеет место кориолисово взаимодействие, было дано Яном [470]. Это правило сразу же сл1 дует из (4,10), если учесть, что составляюпше /7j, принадлежат к тому же типу симметрии, что и а составляющие рх, Ру и р — к тому же типу симметрии, что и повороты вокруг оси X, у и г. Поэтому два колебания вращающейся молекулы будут взаимодействовать вследствие возникновения сил Кориолиса только в том случае, когда произведение их типов симметрии (см. табл. 31 и S3) содержит тип симметрии вращения. Так, для колебаний ч., и Чц линейной симметричной молекулы типа XYa произведение" типов симметрии т. е. получается тип симме-  [c.404]


Изложенные выше соображения применимы как к случаю молекулы, являющейся симметричным волчком в силу своей симметрии (как, например, молекулы КНз и молекулы галоидозамещенных метана), так и к случаю несимметричной молекулы, для которой два главных момента инерции случайно равны друг другу. Сильвер и Шефер [790] и Шефер [776] с помощью квантовой механики более строго доказали справедливость формул (4,38) и (4,39) для плоских и пирамидальных молекул ХУд. То же самое было выполнено Шефером [777] для случая молекул типа Х 2д с аксиальной симметрией и Нильсеном [666] — для общего случая. Эти авторы также дали точные формулы для и а , выраженные через потенциальные постоянные и геометрические параметры молекулы. Аналогично случаю линейных молекул, постоянные а,- слагаются из трех частей гармонической, ангармонической и части, обусловленной кориолисовым взаимодействием [см. уравнение (4,12)]. Сильвер, Шефер и Нильсен также наи ли, что в правые части выражений (4,38—39) необходимо добавить постоянные члены — и —а . Однако эти члены имеют тот же порядок величины, что и вращательные постоянные йу и поэтому практически ими можно всегда пренебречь ).  [c.429]

При практических вычислениях влияния кориолисова взаимодействия на уровни энергии необходимо, так же как и для линейных молекул, составить выражения для колебательных моментов количества движения р , pv н p для различных пар нормальных колебаний, взаимодействующих друг с другом (уравнение (4,10)]. например (vi, Vj) и (va, V3) в случае нелинейной молекулы ХУа, и затем подставить их в оператор Гамильтона общего вида (2,276) (см. Вильсон [935] и Ян [470]). Такие расчеты были выполнены Нильсеном [664] для трех колебаний, v, v -, и ve, молекулы Dj O (см. выше). В этом случае все формулы значительно упрощаются, так как молекула близка к симметричному волчку.  [c.497]

Если бы не было эффектов более высокого порядка, уровни Ai и А2 при данных J ж К имели бы одинаковую энергию точно так же, как две компоненты уровней с данным J в электронно-колебательном состоянии П линейной молекулы. Когда возбуждено вырожденное колебание v , из-за кориолисова взаимодействия или просто из-за колебательно-вращательного взаимодействия возникает расщепление уровней на две компоненты, которое называется -удвоением, несмотря на то что в молекулах типа симметричного волчка в отличие от линейных молекул момент количества движения (колебательный) равен не (hl2n), а Сг h 2n) (см. стр. 67). Гаринг, Нильсен и Pao [406] показали, что точно так же, как в линейных молекулах, при А = 1 удвоение в первом хорошем приближении равно  [c.97]


Колебательные и вращательные спектры многоатомных молекул (1949) -- [ c.402 , c.403 ]



ПОИСК



274, 323—327 симметричный

X2Yj, молекулы, линейные, симметричные кориолисово взаимодействие

XYa, молекулы, линейные, симметричные

Кориолисово взаимодействие

Кориолисово взаимодействие в линейных молекулах

Линейные молекулы



© 2025 Mash-xxl.info Реклама на сайте